
UI driven dynamic analysis and testing of web applications

by

Rahul Krishna Yandrapally

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

in

THE FACULTY OF GRADUATE AND POSTDOCTORAL

STUDIES

(Electrical and Computer Engineering)

The University of British Columbia

(Vancouver)

April 2023

© Rahul Krishna Yandrapally, 2023

The following individuals certify that they have read, and recommend to the Fac-
ulty of Graduate and Postdoctoral Studies for acceptance, the thesis entitled:

UI driven dynamic analysis and testing of web applications

submitted by Rahul Krishna Yandrapally in partial fulfillment of the require-
ments for the degree of Doctor of Philosophy in Electrical and Computer Engi-
neering.

Examining Committee:

Ali Mesbah, Professor, Electrical and Computer Engineering, THE UNIVERSITY

OF BRITISH COLUMBIA

Supervisor

Julia Rubin, Associate Professor, Electrical and Computer Engineering, THE UNI-
VERSITY OF BRITISH COLUMBIA

Supervisory Committee Member

Sathish Gopalakrishnan, Associate Professor, Electrical and Computer Engineer-
ing, THE UNIVERSITY OF BRITISH COLUMBIA

Supervisory Committee Member

Konstantin Beznosov, Professor, Electrical and Computer Engineering, THE UNI-
VERSITY OF BRITISH COLUMBIA

University Examiner

Gene Moo Lee, Associate Professor, Information Systems and Analytics, THE

UNIVERSITY OF BRITISH COLUMBIA

University Examiner

William G.J. Halfond, Professor, Computer Science, UNIVERSITY OF SOUTHERN

CALIFORNIA

External Examiner

ii

Abstract

Modern web applications have evolved to become highly complex, interact-able

software capable of replicating the functionalities of traditional software. The web

application development itself evolved to present a variety of options in terms of

development frameworks and programming languages available to the developers.

This however, also leads to one of core challenges in web application testing, the

heterogenous nature of web applications, which makes software testing techniques

that rely on analyzing source-code ineffective. Instead, end-to-end UI testing is

the preferred mode of ensuring the web applications do not contain faults or bugs.

However, the web UI testing ecosystem has failed to evolve at a similar pace to web

development but instead relies on human effort in practice, making web application

testing a costly endeavour.

The goal of this thesis is to enable automatic testing of web applications re-

ducing reliance on human effort. First, we identified web page equivalence to be

a core challenge faced by existing automatic UI test generation techniques, per-

formed an empirical evaluation of ten existing state comparison techniques and

identified the characteristics of modern web apps that render these techniques in-

effective in generating optimal UI test suites. Thereafter, we designed a novel state

comparison and test generation technique which treats a web page as a set of indi-

vidual functionalities that can be represented in a hierarchy of fragments, helping

us test modern web applications in an effective manner. Next, we designed the

first universally applicable mutation analysis framework for web applications re-

gardless of the back-end and front-end technologies they were built upon. It is

capable of assessing the quality of a given UI test suite without even requiring the

source-code of the web application. Finally, we tackle the challenge of enabling

iii

API testing universally for any web application. Our API testing framework ex-

ercises the UI to carve API test suites and generates API specification that would

enable API testing for any given web application.

We implement our techniques in open-source tools and evaluate them through

a set of controlled experiments. The results show that our techniques succeeded in

accomplishing the set research goals.

iv

Lay Summary

Testing modern web applications to ensure they are bug free in practice is a costly

manual process which consumes a bulk of the development time. As the web ap-

plications grow more complex to enable greater interact-ability and functionality,

testing them becomes equally challenging. The work in this dissertation aims to

facilitate automatic testing of modern web applications by proposing techniques

that tackle a series of core challenges that have so far hindered effective web ap-

plication testing. Through controlled experiments, we show how our techniques

improve upon the existing state-of-the-art and also provide solutions that are first

of their kind for web applications.

v

Preface

Each research chapter of this dissertation corresponds to a research paper, which

has been published or is currently under review. I have collaborated with my PhD

advisor, Prof. Ali Mesbah, for conducting the research projects in all chapters. I

was the main contributor for all chapters, including the idea, design, development,

and evaluation of the work. I had the collaboration of Dr. Andrea Stocco, a former

Post Doctoral researcher in our lab, for Chapter 2, and worked in collaboration with

Dr. Saurabh Sinha and Dr. Rachel Tzoref–Brill from IBM Research for Chapter 5.

In Chapter 2, Dr. Andrea Stocco helped me design initial experiments and writing

the research paper. Similarly, in Chapter 5, Dr. Saurabh Sinha and Dr. Rachel

Tzoref-Brill have helped me design research goals and write the research paper.

The publications for each chapter are as follows.

• Chapter 2

– ”Near-Duplicate Detection in Web App Model Inference” [173]:

Rahul Krishna Yandrapally, Andrea Stocco, and Ali Mesbah,

ACM/IEEE International Conference on Software Engineering (ICSE

2020). 186–197. (acceptance rate: 20.9%)

• Chapter 3

– ”Fragment-Based Test Generation For Web Apps” [172]: Rahul Kr-
ishna Yandrapally, Ali Mesbah, IEEE Transactions on Software En-

gineering (TSE 2022). 16 pages [Early access].

• Chapter 4

vi

– ”Mutation Analysis for Assessing End-to-End Web Tests” [166]:

Rahul Krishna Yandrapally, Ali Mesbah, IEEE International

Conference on Software Maintenance and Evolution (ICSME 2021).

183–194. (acceptance rate: 24%)

• Chapter 5

– ”Carving UI Tests to Generate API Tests and API

Specifications” [174]: Rahul Krishna Yandrapally, Saurabh Sinha,

Rachel Tzoref-Brill, Ali Mesbah, ACM/IEEE International

Conference on Software Engineering (ICSE 2023). 12 pages.

(acceptance rate: 26%)

vii

Table of Contents

Abstract . iii

Lay Summary . v

Preface . vi

Table of Contents . viii

List of Tables . xii

List of Figures . xiv

Acknowledgments . xvi

Dedication . xvii

1 Introduction . 1
1.1 Dynamic State Equivalence and Near-Duplicates in Web Apps . . 3

1.2 Generating and Maintaining Effective Regression Test Suites . . . 5

1.3 Enabling API Testing for Web Applications 6

2 Near-Duplicate Detection in Web App Model Inference 8
2.1 Introduction . 8

2.2 Redundancies in Web App Models 11

2.3 Near-Duplicate Algorithms . 15

2.3.1 Information Retrieval . 15

viii

2.3.2 Web Testing . 15

2.3.3 Computer Vision . 16

2.4 Empirical Study Design . 16

2.5 RQ1: Near-Duplicates in Web Apps 17

2.5.1 Dataset Creation . 17

2.5.2 Classification of Changes 18

2.6 RQ2: Classification of state-pairs 21

2.6.1 Subject Systems . 21

2.6.2 Manual Classification (Ground Truth) 21

2.6.3 Threshold-Based Classification 25

2.7 RQ3: Impact on Inferred Models 29

2.7.1 Thresholds for SAFs (RQ3.1) 30

2.7.2 Using Application Knowledge (RQ3.2) 31

2.7.3 Impact of Efficiency (RQ3.3) 35

2.8 Threats to Validity . 37

2.9 Related Work . 38

2.10 Conclusions and Future Work . 39

3 Fragment-Based Test Generation For Web Apps 41
3.1 introduction . 41

3.2 Background and Motivation . 45

3.2.1 Automatic Test Generation for Web Apps 45

3.2.2 Automatic Test Generation Challenges 48

3.2.3 Page Fragmentation . 50

3.3 Approach . 51

3.3.1 Fragment-based State Abstraction 53

3.3.2 Fragment-based Model Inference 55

3.3.3 Test Generation . 59

3.3.4 Implementation . 62

3.4 Evaluation . 63

3.4.1 Subject Systems . 63

3.4.2 Competing techniques 64

3.5 State-pair Classification (RQ1) 65

ix

3.5.1 Procedure and Metrics 65

3.5.2 Results . 69

3.6 Model Inference Comparison (RQ2) 70

3.6.1 Procedure and Metrics 70

3.6.2 Results . 71

3.7 Regression Testing Suitability (RQ3) 73

3.7.1 Test Breakages (RQ3a) 73

3.7.2 Effectiveness and Robustness of Test Oracles (RQ3b) . . . 79

3.8 Discussion . 81

3.9 Related Work . 83

3.10 Conclusions and Future Work . 85

4 Mutation Analysis for Assessing End-to-End
Web Tests . 86
4.1 Introduction . 86

4.2 Background . 89

4.3 UI Manifestation of Real Faults in Web Applications 90

4.4 Dynamic DOM Mutation . 93

4.4.1 Attribute . 95

4.4.2 Tree . 96

4.4.3 Content . 96

4.4.4 Style . 96

4.4.5 Event . 97

4.5 Technique . 99

4.5.1 Trace Collection . 100

4.5.2 Trace Analysis . 100

4.5.3 Generating Mutation Candidates 102

4.5.4 Mutating Dynamic DOM and Mutation Score 103

4.6 Evaluation . 104

4.6.1 Experimental Setup . 104

4.6.2 Competing Techniques 105

4.6.3 Procedure and Metrics 106

4.6.4 Results . 109

x

4.6.5 Discussion . 113

4.7 Related Work . 114

4.8 Threats to validity . 115

4.9 Conclusion and Future Work . 115

5 Carving UI Tests to Generate API Tests and API Specifications . . . 117
5.1 Introduction . 117

5.2 Background and Motivating Example 120

5.3 Approach . 123

5.3.1 API Test Carving . 124

5.3.2 API Specification Inference 125

5.4 Implementation . 134

5.5 Empirical Evaluation . 135

5.5.1 Experiment Setup . 135

5.5.2 Quantitative Analysis of APICARV Stages 137

5.5.3 RQ1: Coverage Rates and Execution Efficiency of Tests . 139

5.5.4 RQ2: Accuracy of Inferred OpenAPI Specification 139

5.5.5 RQ3: Augmentation Effectiveness of Carved API Tests . . 143

5.5.6 Threats to Validity . 146

5.6 Related Work . 146

5.7 Conclusion and Future Work . 147

6 Concluding Remarks . 149
6.1 Contributions . 149

6.2 Research Questions Revisited . 151

6.3 Reflections and Future Directions 154

Bibliography . 157

A Publications . 176

xi

List of Tables

Table 2.1 Near-Duplicate detection algorithms included in our study. . . 14

Table 2.2 Subject Set with Manual Classification 23

Table 2.3 Average webpage characteristics state (DOM and Screenshot)

across the two datasets . 25

Table 2.4 Estimated statistical (St) and optimal (O) thresholds for

clone (c) and near-duplicate (n) bounds, in dataset DS 27

Table 2.5 F1 Measure for Statistical and Optimal threshold sets 28

Table 2.6 Distinct pair (Pr, Re, F1) on existing datasets 31

Table 2.7 Inferred model F1 score . 33

Table 2.8 Inferred model F1 for each algorithm for selected thresholds . . 34

Table 2.9 Techniques Speed and Inferred model (Re, Pr, F1) for best 5-

minute crawls . 36

Table 2.10 Inferred model F1 for 30-Minute crawls 36

Table 3.1 Raw distances of state-pairs 49

Table 3.2 Experimental subjects . 64

Table 3.3 Manually classified state-pair dataset 65

Table 3.4 F1 of inferred models for 60 minute crawls 68

Table 3.5 Comparison of inferred models (eight subjects) 70

Table 3.6 Regression test run results . 74

Table 3.7 Regression test execution set-up 75

Table 3.8 Mutation operators for DOM nodes 78

Table 3.9 Effectiveness and Robustness of test oracles 80

xii

Table 4.1 Bug Repositories . 91

Table 4.2 Mutation Operators and their types 94

Table 4.3 Experimental Subjects . 104

Table 4.4 Bug Severity based on User Perception 107

Table 4.5 Mutant Stubbornness . 107

Table 4.6 Mutant Generation per subject 108

Table 4.7 Mutants Generated by MAEWU 108

Table 4.8 Mutant quality Per Operator 111

Table 5.1 Web applications used in the evaluation. 135

Table 5.2 Statistics about different analysis stages in APICARV runs on

the subject applications. 136

Table 5.3 Precision, recall, and F1 scores achieved for API specification inference.140

Table 5.4 Endpoints inferred, path/operation duplication found, and operation

inconsistencies detected. 142

xiii

List of Figures

Figure 2.1 Example of near-duplicate web pages. 12

Figure 2.2 Different subclasses of near-duplicate state-pairs. 22

Figure 2.3 Normalized Distance distribution of labelled pairs in the

dataset DS . Within each box-plot, from left to right: clone,

near-duplicate and distinct pairs. 24

Figure 2.4 Normalized F1 over %(states in model) during 30-minute

crawls of RTED . 38

Figure 3.1 Motivating example: app states with actionables highlighted. 43

Figure 3.2 Model inference for the motivating example. 46

Figure 3.3 Inferred model of the motivating example. 46

Figure 3.4 Fragment-based state comparison in FRAGGEN 52

Figure 3.5 Model inferred by FRAGGEN 58

Figure 3.6 Test execution flowchart. The function Classi f y is defined

in algorithm 1 . 61

Figure 3.7 State-pair classification results on the dataset 67

Figure 3.8 F1 as states are detected and added to the model. 68

Figure 3.9 Detected near-duplicates in phoenix 72

Figure 3.10 Test breakages on the same app version (ε1,ε2) 75

Figure 3.11 Manual analysis of failed test actions and oracles on a different

version of the web apps . 76

Figure 3.12 Effectiveness vs Robustness of test oracles 81

Figure 3.13 Undetected near-duplicate fragments in phoenix 83

xiv

Figure 4.1 Analyzed Bugs . 91

Figure 4.2 Bugs with UI Manifestation 91

Figure 4.3 Web Application Bug Categories 92

Figure 4.4 Sample Web Page with Source Code 95

Figure 4.5 Technique Overview. 98

Figure 4.6 Example Web Pages . 99

Figure 5.1 Example illustrating a sequence of UI actions and states along

with the API calls that are triggered by UI events. 121

Figure 5.2 Overview of our technique APICARV. 123

Figure 5.3 The specification-inference flow (InferSpec). 125

Figure 5.4 Illustration of specification inference. 128

Figure 5.5 Bipartite analysis for API probe generation. 132

Figure 5.6 Example for illustrating probe scheduling. 134

Figure 5.7 Coverage rates and execution times of UI tests and carved API

tests. 138

Figure 5.8 Augmentation effectiveness of carved tests: coverage rates of

test suites generated by EvoMaster (em) and Schemathesis (st)

before augmentation (original) and after augmentation with

carved tests and probes. 142

Figure 5.9 Example of an endpoint and the associated service code (from

petclinic) that requires specific test data. 144

Figure 5.10 Example (from the ecomm application) of dependencies

between API endpoints. 144

xv

Acknowledgments

I would like to express my deepest gratitude to my supervisor, Ali Mesbah, for his

exceptional guidance and supervision in the past five and a half years. He gave me

the freedom to make mistakes, learn important lessons and find my own way, but

always steering me towards becoming a competent independent researcher. This

thesis would not have been possible without his impeccable insights and unwaver-

ing support. I am indebted to Andrea Stocco, a great mentor and a friend, whose

support and encouragement helped me endure and progress beyond the difficult

first year of my PhD. I would like to thank Saurabh Sinha and Rachell Tzoreff-

Brill from IBM research, whose collaboration helped me formulate the final re-

search problem of my PhD. Saurabh has been a mentor to me since my days in

IBM, and it was his support and encouragement that made me take up PhD in the

first place. I am thankful to my supervisory committee Dr. Julia Rubin and Dr.

Sathish Gopalakrishnan for providing valuable comments and suggestions on my

PhD proposal as well as my dissertation. My sincere gratitude goes to my final

examination committee, Dr. Konstantin Beznosov, Dr. Gene Moo Lee, and Dr.

William G.J.Halfond. I would also like to acknowledge all my dear friends and

colleagues in Software Analysis and Testing (SALT) Lab at UBC. I also gratefully

acknowledge the financial support by the Natural Sciences and Engineering Re-

search Council of Canada (NSERC), as well as the Four Year Doctoral Fellowship

of UBC, that helped me to focus full time on my research. Finally, I would like

to thank my parents, sister, family and friends for their love and support over the

years. I am specially indebted to my wife, Keerthi, for her love, understanding, en-

couragement and most importantly patience through my journey as a PhD student.

xvi

To my daughter Sitara.

xvii

Chapter 1

Introduction

Commercial software, made possible by the advent of personal computing, was

distributed physically using drives such as CDs to be used on individual computers

for much of the previous century. A rapid rise of cloud infrastructure and internet

availability has rendered the concept of owning software itself obsolete where,

today, users need only a web browser to satisfy all their computing needs.

This transformation of personal computing is made possible by the develop-

ment of complex web applications, which respond to user interactions just like

desktop software while relying on a server to handle computationally intensive

tasks. Modern web apps are a heterogeneous collection of dynamically integrated

web components that are spread across multiple tiers. While the server-side com-

ponents written in languages such as Java and PHP contain the bulk of the business

logic, client-side components are built using JavaScript, HTML, and CSS and, are

rendered by browsers as interact-able web pages.

Owing to their heterogeneous nature, testing web apps programmatically is

challenging and is often performed in an end-to-end (E2E) fashion by exercising

the GUI functionality of web apps. Given the short release cycles of web apps,

automated regression testing assumes a significant role in the validation of software

changes. In practice, regression testing for web apps is carried out using automated

UI test suites such as the one shown in Listing 1.1. A UI test case is a sequence of

UI actions and assertions which verify GUI states resulting from actions.

1

Listing 1.1: Selenium JUnit Test Case
private WebDriver d r i v e r = new ChromeDriver () ;

@Before

public void setUp () {
d r i v e r . get (app u r l) ;

}

@Test

public void t es tCo l l ab t i veLog inUse r () throws Except ion {
d r i v e r . f indElement (By . i d (” username ”)) . sendKeys (” username001 ”) ;

d r i v e r . f indElement (By . i d (” pass ”)) . sendKeys (” password001 ”) ;

d r i v e r . f indElement (By . cssSe lec tor (” bu t ton . l o g i n b t n ”)) . c l i c k () ;

d r i v e r . f indElement (By . xpath (” / / * [@id=\”mainmenue \ ”] / l i [2] / a ”)) . c l i c k () ;

asser tTrue (d r i v e r . f indElement (By . cssSe lec tor (” body ”)) . getText ()

. matches (” ˆ [\\ s\\S] * username001 [\\s\\S] * $ ”)) ;

However, regression testing using such automated UI test suites is a costly

activity [152], requiring testers to manually create regression test suites, using a

combination of programming and record/replay tools such as Selenium. In tradi-

tional test suites, test failures during regression testing typically indicate an appli-

cation change or an application bug. However, automated UI test suites are prone

to test breakages which cause test failures which reveal no application bugs. These

breakages typically occur due to broken locators such as “id” attributes that are

used to locate web elements to perform UI actions. As a result, maintenance of

such regression test suites is known to be expensive as it requires human interven-

tion [58, 93]. Even minor changes of the app can cause many test cases to fail; for

example, according to a study at Accenture [58] even simple modifications to the

user interface of apps result in 30–70% changes to tests, which costs $120 million

per year to repair. When the test maintenance cost becomes overwhelming, whole

test suites are abandoned [33]. To create regression suites that can handle web

app evolution, researchers have attempted to either develop test suites that are ro-

bust to application changes [151, 167] or repair broken tests [31, 146]. Both these

approaches are limited in their scope and cannot handle changes in app behavior

beyond broken web element locators.

Therefore, automatic generation of regression test suites seems a necessity.

However, the effectiveness of web test generation techniques [23, 97] is limited by

2

the availability of an accurate and complete model of the app under test. Manual

construction of such models for complex apps is not practical and hence, needs to

be automated. Web app crawling [94, 156] is a popular technique for automated

model inference, where, the state space of a given web app is explored iteratively

to capture state transitions in response to user actions. While crawlers are effi-

cient even for large complex web apps, they output sub-optimal models for even

small apps that can contain near-duplicate states which are states that have similar

functionally but can contain any number of structural, textual or visual differences.

In addition to the challenges to model inference, near-duplicate states also pose

a challenge to creation of reliable test oracles both for automated as well as gen-

erated test oracles. In traditional software, the program output is deterministic and

therefore regression test suites can easily verify output. However, in web applica-

tions, the same does not hold true and therefore, test oracles need to be resilient

to minor cosmetic changes in web pages while still being able to detect functional

changes.

1.1 Dynamic State Equivalence and Near-Duplicates in
Web Apps

The state in the inferred models of web apps represents the client-side dynamic

webpage of the app, as represented by the Document Object Model (DOM) [1]

in the browser. However, an adequate model should contain only the minimal

set of unique states that represent the web app functionalities, while discarding

insignificant states that dot not contribute to exposing new functionality to the end

user. Instances of such insignificant states are, for instance, pages only differing

by small cosmetic changes, which are also referred to as near-duplicates in the

literature.

From an end-to-end (E2E) testing perspective, clone and near-duplicate states

in web app models negatively impact their accuracy and completeness, undermin-

ing the quality of the test suites generated from such models in terms of size, run-

time, and coverage.

While web testing deals with the similarity between web pages of the same app,

clone and near-duplicate detection across different web apps has been an active re-

3

search topic in many fields [43, 44, 64, 86]. However, there is, neither a consensus

on the definition of near-duplicate web pages, nor a unified standard against which

a technique can be assessed [63, 64]. Depending on the purpose of comparison,

researchers have defined various abstractions for a web page [48, 96, 98, 132] to

programmatically detect near-duplicates.

Definition 1 (State Abstraction Function).

A (dist, p1, p2, t)

{
true : dist(p1, p2)< t

f alse : otherwise

Existing crawlers employ a state ab-

straction function(SAF), defined in 14,

which determines if p1 ≃ p2 for any two

given web states p1 and p2, by comparing

the distance between an abstraction over p1 and p2 to a constant t. t is called the

distance threshold, and is often determined by a trial and error process as no sys-

tematic means have been proposed so far to estimate it automatically. However,

the changes in the DOM or visual characteristics used as abstractions, do not al-

ways result in semantic changes such as the functionality, defeating the goal of

state equivalence in functional web testing.

Research Question 1. What are functional near-duplicates and how to detect

them?

In order to design effective state comparison techniques, we needed to under-

stand the nature of changes that characterize semantic relationships between web

states from a functional testing perspective. In consideration, near-duplicates be-

come interesting as they differ from each other while being classified as similar.

Our study on near-duplicate pages (Chapter 2) proposed a methodology to classify

a given state-pair and assess the effectiveness of existing techniques. We purposed

10 different existing near-duplicate detection techniques from three domains for

model inference and proposed a systematic approach to select optimal thresholds.

Our study concluded that regardless of the abstraction used, neither structural nor

visual characteristics of the whole page can reliably be used to capture their under-

lying functionality.

Research Question 2. How to produce accurate web app models and effective

regression test suites?

4

As the existing model inference techniques are ineffective in correctly classify-

ing state changes for dynamic web apps, they produce inaccurate models rendering

dependent techniques such as test generation ineffective. We developed a novel

model inference technique (Chapter 3), that is effective in handling web app dy-

namism to improve model precision and recall while generating smart test oracles

in regression test suites.

1.2 Generating and Maintaining Effective Regression
Test Suites

Regression test suites are often generated/created to cover all possible actions/s-

tates in web app. Another important but often neglected aspect of regression testing

is the creation of effective test assertions or test oracles, which are key in detecting

app regressions. Given an accurate model of the web app, model-based test gener-

ation can efficiently create test suites based on predefined model coverage criteria.

However, generated test assertions are known to be brittle [157] and result in false

test failures which require costly manual analysis.

Regression test assertions should be able to detect unexpected app behavior,

but at the same time, be tolerant to minor changes that do not affect the functional-

ity. However, existing techniques[97, 127] employ abstractions over DOM similar

to definition 14 and hence become ineffective. In practice, therefore, test oracles

are often manually designed even for generated test cases [157]. In this proposed

thesis, I also propose means to generate effective test oracles which require a nu-

anced comparison of web pages beyond simple whole-page comparison currently

being employed.

Regression test suites can be declared effective only if they can detect appli-

cation bugs. However, current test generation techniques [23, 89, 96] focus ex-

clusively on coverage metrics which are shown to be irrelevant to determine test

effectiveness [65]. Since manual seeding of application bugs is impractical for

large software, mutation testing has become an accepted norm in establishing the

fault-revealing capabilities of test suites.

Unfortunately, there exist no mutation analysis tools for web apps owing to

their heterogeneous nature. Existing mutation analysis tools for web applications

5

focus on source code mutation limiting them to a subset of web app components

written in the target programming language.

Research Question 3. How to measure the effectiveness of regression test suites?

To address this research question, we developed a configurable and extensible

mutation analysis framework (Chapter 4) for web apps that can assess the effec-

tiveness of UI test suites irrespective of the nature of underlying individual web

components. Our technique mutates the DOM in the browser at runtime instead of

source-code in order to make it applicable to all web apps universally.

1.3 Enabling API Testing for Web Applications
Modern web applications make extensive use of API calls to update the UI state in

response to user events or server-side changes. In particular, they increasingly rely

on web APIs that follow the REST (REpresentational State Transfer) architectural

style [53] and are referred to as RESTful or REST APIs. For such applications,

API-level testing can play an important role, in between unit-level testing and UI-

level (or end-to-end) testing.

API testing places the focus of testing on the operations of a service as well as

sequences of operations; it exercises the server-side flows more comprehensively

than unit testing but without the need to go through the UI layer. Existing API

testing tools require API specifications (e.g., OpenAPI), which often may not be

available or, when available, be inconsistent with the API implementation, thus

limiting the applicability of automated API testing to web applications.

Research Question 4. How to enable API testing universally for all web apps?

We developed a first-of-its-kind approach for carving API test cases and API

specifications from UI paths (Chapter 5) that enables API-level testing for web

applications, irrespective of the frameworks they use. Our dynamic technique exe-

cutes the web application via its UI to automatically create (1) API-level test cases

that invoke the application’s APIs directly, and (2) a specification describing the

6

application’s APIs that can be leveraged for development and testing purposes.

7

Chapter 2

Near-Duplicate Detection in Web
App Model Inference

2.1 Introduction
Automated techniques such as web app crawlers are widely used to

reverse-engineer state-based models as a viable vehicle for various analysis and

testing tasks such as automated test generation. The state in such models

represents the dynamic webpage of the app, as represented by the Document

Object Model (DOM) in the browser. Crawlers are capable of efficiently

exploring a large state space of any given web app. However, an adequate model

should contain only the minimal set of distinct states that represent the web app

functionalities, while discarding insignificant states that do not contribute to

exposing new functionality to the end user. Instances of such states are pages only

differing by small cosmetic changes, which are also referred to as near-duplicates

in the literature [43, 44, 64, 86]. To discard such near-duplicate webpages,

crawlers have adopted state abstraction functions over the DOM [48, 96, 98, 132]

as a proxy for the similarity of webpages. The downside of these abstractions is

that minimal changes to the DOM can result in duplicate states in the model, even

if such DOM changes are not reflected on the final UI visually, and therefore

might not be representative of a new webpage functionality. From an end-to-end

(E2E) testing perspective, clone and near-duplicate states in web app models

8

negatively impact their accuracy and completeness, undermining the quality of the

test suites generated from such models in terms of size, runtime, and coverage.

Clone and near-duplicate detection across different web apps has been an ac-

tive research topic in many fields [43, 44, 64, 86]. In information retrieval, the

content of a webpage has been the primary focus, because the purpose of web

search engines is to index and retrieve information from webpages through search

queries. Computer vision techniques have been employed to detect visually sim-

ilar webpages, for instance in phishing detection [6, 30]. Other approaches lever-

age state abstractions based on the similarity of URLs, textual content and the

DOM [24, 130, 155]. Detecting near-duplicate pages is a challenging problem

as there is no generally accepted definition of near-duplicate states and there is no

unified standard against which a technique can be assessed [63, 64]. A second chal-

lenge pertains to the selection of similarity thresholds that such techniques need as

input to determine when two pages are similar. These thresholds are usually edu-

cated guesses, as no systematic means have been proposed so far to estimate them

automatically.

In this work, we are interested in detecting distinct states in web app models

in the context of functional E2E web testing. Our aim is to study the nature of du-

plicate states occurring within a web app, and provide a systematic approach to se-

lecting thresholds for inferring an optimal model, i.e., having the lowest number of

(near-)duplicate states. To this end, we evaluate the capability of 10 near-duplicate

detection algorithms in identifying clone, near-duplicate, and distinct web app

states. We adopt techniques from three different domains—information retrieval,

web testing, and computer vision—where the textual content, the DOM tree, and

the visual screenshot of the page are used to measure the similarity between states.

Our goal is to assess whether textual, structural, or visual features are related with

semantic properties of webpages and provide meaningful means to understanding

their degree of functional relatedness from an E2E testing perspective.

To select the similarity thresholds for fine-tuning such techniques, we first

crawled 6k websites randomly selected from Alexa’s top million URLs. We re-

trieved 493k pairs of states belonging to the same application, and computed the

similarity distance between these pairs using each near-duplicate algorithm. We

then manually classified 1k random state-pairs into three categories of clone, near-

9

duplicate, or distinct. We used our empirical data of distances to choose thresholds

for each algorithm through statistical and optimization search methods. We eval-

uated their accuracy in automatically classifying clones and near-duplicates in the

remaining unlabelled portion of the dataset. Further, we evaluated these configured

algorithms on a subject set of nine unseen web apps, for which manual ground truth

models were previously created.

Our work makes the following novel contributions:

• The first study of 10 different near-duplicate detection techniques applied in

the context of web app model inference.

• A classification of different categories of near-duplicates occurring within a

web app.

• Systematic ways of threshold selection for near-duplicate detection as well

as an empirical evaluation of their effectiveness in test models.

• The toolset comprising the 10 near-duplicate detection algorithms, which is

available for download [168].

• A dataset of 99k manually classified pairs of webpages, of which (1) 1,5k

pairs are randomly sampled from 6k websites, and (2) 97.5k from nine real-

size web apps. Our dataset can be used by others to conduct similar near-

duplicate detection studies and is also available for download publicly [168].

Our results show that even with the best thresholds, no algorithm is able to

accurately detect all functional near-duplicates within apps. In practice, existing

near-duplicate detection techniques are not designed to find functional similarity

in a way that human testers regularly assess while testing web apps. For certain

types of near-duplicates, we observed that the model deteriorates over time as the

crawl progresses. For instance, although RTED was able to achieve a high accu-

racy F1 score of 0.95 initially, the final produced model had only an F1 of 0.45.

This deterioration is due to the accumulation of numerous near-duplicates to the

model, which decreases precision. Our results underline the need for further re-

search in devising techniques geared specifically toward web test models, i.e., that

10

can distinguish between different types of near-duplicates such as those found in

our study.

2.2 Redundancies in Web App Models
In practice, web testing is often performed in an end-to-end (E2E) fashion, by

verifying the correctness of the web app state in response to user events and inter-

actions with the GUI (e.g., clicks, and forms submissions). This task is performed

either manually by testers, or by writing test scripts with test automation tools such

as Selenium [134].

Automated techniques, on the other hand, generate web test cases from mod-

els that are inferred through reverse-engineering techniques. A popular method

to model construction for modern web apps is automated state exploration, also

known as web app crawling [94, 156]. Such techniques dynamically analyze the

web app under test by automatically firing events and checking the webpage for

changes. When new state changes are detected, the model is updated to reflect

the event causing the new state. Generated models can be represented in various

formats such as UML state diagrams, Finite State Machines (FSM), or State-Flow

Graphs (SFG) [94, 126, 156].

To avoid redundancies in the model, states that are identical or highly similar

to previously encountered states should be discarded. For instance, let us consider

Figure 2.1, a web app in which the homepage shows a list of phones. When the

user clicks on any of the phones in that list, she is redirected to another web page

displaying the detailed characteristics of the selected phone. From a functional

testing viewpoint, however, a page containing a list of 20 phones is conceptually

the same as one listing the same 20 phones plus one extra phone.

The problem of detecting already visited states can be cast as an equivalence

problem: given two web page states p1 and p2 explored by the crawler, a state

abstraction function determines whether p1 ≃ p2. More formally:

Definition 2 (State Abstraction Function). A state abstraction function (SAF) A

is a pair (dist, t), where dist is a similarity function, and t is a threshold defined

over the values of dist. Given two web pages, p1, p2, A determines whether the

distance between p1 and p2 falls below t.

11

Search:

Brand1 Phone with AI
Camera

Brand1 Phone Lite

Brand1 Phone has a super-powerful processor and Android 9.0
(Pie). With its AI-based camera, you’ll enjoy fantastic pictures!

Brand1 Phone with AI Camera

RAM Storage Camera CPU
4GB 128GB AI-based 8x 2.36 Ghz

Battery
4000 mAh

Brand1 Phone Lite
Brand1 Phone Lite has a great processor and Android 8.1
(Oreo). You’ll enjoy its great performance every day!

RAM Storage Camera CPU
2GB 64GB Dual 4x 2.36 Ghz

Battery
3400 mAh

Figure 2.1: Example of near-duplicate web pages.

A (dist, p1, p2, t)

true : dist(p1, p2)< t

f alse : otherwise

In practice, A is defined based on the similarity of some abstracted notion of

the web pages such as their URLs, textual content, DOM structure, or screenshot

image. However, the amount and nature of changes occurring in a web page with

respect to the functionality of the app is not always directly proportional to the

amount of changes in the DOM tree, textual content, or visual aspects of the page.

Let us consider using a crawler equipped with a SAF based on DOM content

similarity on our sample web app of Figure 2.1. This SAF is less tolerant to con-

tent (textual) changes occurring in web pages. Therefore, each page displaying a

new phone’s characteristics might be considered a different state and many func-

tionally similar occurrences of already modelled pages (i.e., near-duplicates) would

be included in the model. If we use this inflated model to generate test cases, the

overall functional coverage does not change when the generated tests exercise the

phone details page multiple times, thus potentially wasting precious testing time

and resources.

On the other hand, another “better” SAF, for instance based on the DOM tree

similarity with a proper threshold value, would consider all such phone detail pages

as the same, providing a more concise model for the web application of our exam-

ple. However, a high threshold value might cause other relevant functionality to be

abstracted away as well, resulting in an incomplete model.

Near-duplicate detection techniques have been studied for reducing the occur-

12

rence of redundant similar pages across web apps, e.g., in web search engines [29]

or phishing detection [108]. An understanding of whether such techniques apply

also in detecting functional near-duplicates within the same web app is missing in

the literature. Despite its prevalence and importance, this problem is understudied,

because it is hard to define a notion of equivalence for two arbitrary webpages.

Moreover, in the general case, deciding a priori which abstraction function and

which threshold would work best for a given web app is a challenging task, as it

requires substantial domain-specific knowledge of the web app under test.

13

Table 2.1: Near-Duplicate detection algorithms included in our study.

Domain Algorithm Input Description Distance Output

Information Retrieval

Web Search simhash [29] DOM (content) 64 bit fingerprinting technique which uses
features extracted from the web page content

Hamming distance of two 64 bit
digests

Malware detection TLSH [108] DOM (content) Locality-sensitive 256 bit hashing scheme
that is robust to minor variations of the input

Hamming distance of two 256 bit
digests

Web Testing

RTED [98, 112] DOM (Tree) Minimum-cost sequence of node edit opera-
tions that transform one DOM tree into an-
other

Tree edit distance value normal-
ized by the sum of nodes in the
two trees

Levenshtein [75, 96] DOM (String) Minimum number of single-character edits
required to transform one string into another

Edit distance value normalized by
the sum of the string lengths

String Equality (baseline) DOM (String) String equality comparison Boolean value

Computer Vision

Image Hashing PHash [179] Screenshot 128 bit perceptual hash that represent the
lowest frequencies of pixel brightness, to
which discrete cosine transform (DCT) is ap-
plied to retrieve a brightness matrix

Hamming distance of two 128 bit
digests

Block-mean [175] Screenshot 256 bit perceptual hash obtained by divid-
ing the image into non-overlapping blocks,
which are encrypted with a secret key and
normalized median value is calculated

Hamming distance of two 256 bit
digests

Whole Image Comparison Histogram [150] Screenshot Color distribution of a digital image χ2 distance between two color
histograms

PDiff [178] Screenshot Adopts a human-like concept of similarity
that uses spatial, luminance, and color sen-
sitivity

Number of different pixels nor-
malized by the maximum number
of pixels in the two images

Structural Similarity SSIM [10] Screenshot Simulates the high sensitivity of human vi-
sual system to structural distortions while
compensating for non-structural distortions

Normalized structural distortion
value

Feature Detection SIFT [80] Screenshot Computes local feature vectors and image
descriptors which are invariant to geometric
affine transformations like scaling/ rotation

Number of different key-points
normalized by the maximum
number of key-points in both
images

14

2.3 Near-Duplicate Algorithms
In this work, we study 10 near-duplicate detection algorithms from three different

domains, namely, information retrieval, web testing, and computer vision. Ta-

ble 2.1 presents the techniques, along with the domain they belong to, the input

types, a short description, and their distance output.

2.3.1 Information Retrieval

Near-duplicate detection has been applied to index the massive volume of web

pages continuously retrieved by web crawlers for search engines. The overall goal

is to select only a relevant set of pages based on the provided user search string.

In this setting, performance is the most important factor, therefore hashing mech-

anisms have been adopted due to their design simplicity and speed of comparison.

As an input, the web page content is typically the primary focus when designing

algorithms used in this domain.

We chose two content hashing algorithms from this domain:

(1) simhash [29], a popular and effective web page fingerprinting technique

adopted by Google to index web pages [64], and (2) Trend Locality Sensitive

Hash (TLSH) [108], a hashing technique for fingerprinting source code, employed

for malware detection [159].

2.3.2 Web Testing

In the web testing domain, researchers have studied DOM-based abstractions to

compare webpages during the crawling of the application under test. The assump-

tion is that two web pages sharing similarities among their DOMs are likely to

represent pages having analogous functionalities, hence it is worthwhile to con-

sider them the same. The DOM can be treated either as a tree-like structure, or as

a simple string of characters.

We chose three different similarity algorithms over the DOM that have been

employed as state abstraction functions in prior web testing research [96, 98, 144]:

(1) tree edit distance with the RTED algorithm [112], (2) Levenshtein distance [75]

over the string represented by the DOM, and (3) string equality between two DOM

strings, which we use as baseline.

15

2.3.3 Computer Vision

Image similarity is one of the main topics in computer vision. Many techniques

have been proposed and studied, at different levels of granularity, ranging from

low-level pixel matching up to high-level feature-based matching. These tech-

niques are applied in indexing and searching, summarization, object detection and

tracking, facial recognition, and also copyright image detection. We consider dif-

ferent classes of image-based algorithms.

Image hashing techniques map visually identical or nearly-identical images

to the same (or similar) digest called image hash. We chose two image hashing

algorithms: (1) block-mean hash [175] and (2) perceptual hash (PHash) [179],

which have been used in multimedia security for image retrieval, authentication,

indexing and copy detection. Whole image matching techniques focus instead on

individual pixels composing the image. Color-Histogram [129] and Perceptual

Diff (PDiff) [178] have been successfully applied in previous web testing work for

detecting cross-browser incompatibilities [84]. A downside of those techniques

is that they are affected by changes in coordinates of web elements common in

responsive web layouts. Structural similarity techniques quantify image quality

degradation. For instance, Structural Similarity Index (SSIM) [10] has been shown

to be effective due to the highly structured nature of web apps’ GUIs [30]. Lastly,

feature detection techniques have been widely employed for near-duplicate image

detection. For instance, Scale Invariant Feature Transform (SIFT) [80] has been

applied to aid web test repair [146] and phishing detection [6].

To the best of our knowledge, this work is the first to consider and evaluate

visual image similarity as a near-duplicate detection technique for web application

crawling.

2.4 Empirical Study Design
The goal of our study is to determine how existing near-duplicate detection tech-

niques can be employed to obtain an optimal model of a web application that can

be used for E2E testing.

RQ1: What type of functional near-duplicates exist within apps?

16

RQ2: How well can functional near-duplicates be detected?

RQ3: What is the impact of near-duplicates and detection techniques in inferring

a web-app model?

First, in Section 2.5, we randomly sample 1,000 within-app state-pairs from

a dataset created by crawling 6k randomly selected URLs. We characterize the

changes occurring between states within an app and identify how they lead to dif-

ferent classes of functional near-duplicates (RQ1). We label these 1,000 pairs as

either clones, near-duplicates or distinct states, and compute the distance between

them for all the ten near duplicate techniques described in Section 2.3.

In Section 2.6, using these labelled pairs, we compute statistical and optimal

thresholds to fine-tune each near duplicate technique. Through this, we aim to de-

termine whether such randomly sampled distances from a large dataset can be used

to automatically classify state-pairs in unseen web apps and detect near-duplicates

(RQ2).

In Section 2.7, we determine the best near-duplicate detection techniques and

application-specific thresholds to infer web app models for nine open-source web

apps covering the different near-duplicate categories. Finally, we analyze these

models to determine how different kinds of near-duplicates impact model inference

(RQ3).

2.5 RQ1: Near-Duplicates in Web Apps
In order to determine what kinds of functional near-duplicates occur within apps,

we first create a dataset of within app state-pairs and their calculated distances

for each near-duplicate detection algorithm. Then, we manually characterize the

nature of differences between pairs of pages and classify them in a random sample.

2.5.1 Dataset Creation

First, we crawl randomly selected website URLs from the top one million as pro-

vided by Alexa,1 a popular website that ranks sites based on their global popularity

for a week using CRAWLJAX [96], an event-driven crawler for exploring highly

1http://www.alexa.com

17

http://www.alexa.com

dynamic web apps. We configured CRAWLJAX to run using the Chrome browser,

with its default simple state abstraction function, namely string equality (see Ta-

ble 2.1), and a runtime limit of five minutes for each crawl.

To account for network communication errors and the tool’s exploration limita-

tions, e.g., on sites that require login credentials, we filtered out sites for which the

crawl models obtained contained less than 10 states. After this filtering stage, we

retained 1,064 different sites accounting for 30,202 states from the original 6,359

web crawls. We then created all possible 677,415 pair-wise combinations of states

within each crawl, which we call state-pairs.

Computing Distances

We computed the distance for each state-pair using each of the 10 algorithms pre-

sented in Table 2.1. We discarded the state-pairs for which the distance could

not be computed correctly, such as the case of DOM-based tree edit distance of

malformed HTML trees. The final dataset, called DS , contained 1,031 sites and

29,704 states, from which 493,088 state-pairs with properly computed distances

were obtained.

Distance Normalization

The raw distances which quantify the difference between two given pages have

different output spaces based on the page characteristic used by the technique. As

an example, given a state-pair of web pages, PDiff outputs the number of percep-

tually different pixels between their screenshots, whereas BlockHash returns the

hamming distance between image hashes. For the sake of comprehensibility, we

normalized all distances computed by each algorithm, as described in the Distance

Output column of Table 2.1, but we never compare outputs of different techniques.

2.5.2 Classification of Changes

To gain a better understanding of what changes within web pages characterize near-

duplicates, we classify the differences of the state-pairs in our dataset from the

point of view of a human tester who is interested in functionality coverage.

18

Procedure

Manually examining state-pairs is a time consuming task requiring familiarity with

the functionality of the application. Therefore, we randomly sampled a set, called

RS , of 1,000 state-pairs from our final dataset of 493,088 state-pairs, which al-

lows us to have a confidence level of 99% with a 4% margin of error in deriving

a representative statistic. For each state-pair (pi, p j) ∈S , the authors of the pa-

per visually analyzed, in isolation, the screenshot images (and the original web

pages where necessary) of the two web app states from a functional testing per-

spective, to obtain a set D of differences. Each difference in D is defined as

∆(pi, p j) = {δ (ei,e j)} where δ (ei,e j) is a pair of non-identical web elements in

which ei ∈ pi and e j ∈ p j. Finally, each author assigned a descriptive label to each

detected difference.

Difference Categorization

After enumerating all differences across the 1,000 state-pairs in RS , the authors

reviewed them together to resolve conflicts and reached consensus on equivalence

classes of differences. Our study revealed the following categories.

Definition 3 (Unrelated (U)). Given a difference δ (ei,e j), neither of ei or e j are

related to any functionality offered by the web app.

Examples of these differences include changes in background images, or GUI

widgets related to advertisement (see red ovals in Figure 2.2a).

Definition 4 (Duplicated (D)). Given a difference δ (ei,e j), ei and e j replace each

other in the original pages pi and p j without adding any new functionality to either

page.

Two distinct subcategories of duplicated differences emerged:

• Replacement (D1): D1 : ei ≡ e j meaning the difference represents a function-

ality or content that is equivalent. For instance, in Figure Figure 2.2b, the red

ovals highlight equivalent content.

• Addition (D2): D2 : ei = /0∧∃e′i ∈ pi : e′i = e j ∨ δ (e′i,e j) |= D1 meaning the

non-empty ex in δ has a duplicate ey in the same page, and therefore its ad-

dition does not affect the overall functionality of the page. For example, in

19

Figure Figure 2.2c, the oval identifies a duplication of an existing function-

ality.

Definition 5 (New (N)). Given a difference δ (ei,e j), δ represents a new function-

ality or a semantically different content, i.e.:

δ (ei,e j) |= N : (ei = /0)∧ (∄e′i ∈ p1s.te′i = e j ∨δ (e′i,e j) |= D).

For example, the search box in Figure 2.1 is absent in phone description pages

and is an example of new functionality.

State-Pair Classification

Following the classification of differences described above, we classified state-

pairs from a functional point of view, in three distinct categories defined as follows.

Definition 6 (Functional Clone (Cl)). Given two web pages p1 and p2, the state-

pair (p1,p2) is a functional clone (Cl) if there are no semantic, functional or per-

ceptible differences between them, defined as Cl : ∆(p1, p2) = /0.

Definition 7 (Functional Distinct (Di)). Given two web pages p1 and p2, p1 is

functionally distinct from p2 if there is any semantic or functional difference be-

tween the two pages, Di : ∃δ (ei,e2) |= N.

Definition 8 (Functional Near-Duplicate (Nd)). Given two web pages p1 and p2,

p1 is a functional near-duplicate of p2 if the changes between the states do not

change the overall functionality being exposed: Nd : ∆ ̸|=Cl∧∄(δ (e1,e2) |= N) ∈
∆.

We further observed three fine-grained subclasses of near-duplicates in our

dataset.

Cosmetic (Nd1) when changes related to the aesthetics of the webpage such as

advertisements or background images occur, which leave the functionalities

unaltered (see Figure Figure 2.2a): Nd1 : ∆(p1, p2) ∋ δ (e1,e2) |=U

Dynamic data (Nd2) when both states of the pair are generated from the same

template and populated with dynamic data, according to a user query or app

business logic (see Figure Figure 2.2b): Nd2 : ∆(p1, p2)∋ δ (e1,e2) |=D1∨U

20

Duplication (Nd3) when there are additional web elements in a page the function-

ality and semantics of content of which is entirely represented within the

other page (see Figure 2.2c): Nd3 : ∃δ (e1,e2) |= D2 ∈ ∆(p1, p2)

Following these definitions, we manually labelled the 1,000 state-pairs in RS ,

and found 441 clones, 275 near-duplicates (45 Nd1, 219 Nd2, 11 Nd3), and 284

distinct pairs.

2.6 RQ2: Classification of state-pairs

2.6.1 Subject Systems

To address RQ2 (and later RQ3), we need to infer models with different algorithms

and thresholds numerous times, which requires web apps with deterministic be-

haviours.

To this aim, we selected nine open-source web apps (Table 2.2) used in

previous research of web testing [22, 23, 144, 145], as subjects: Claroline (v.

1.11.5) [34], Addressbook (v. 8.2.5) [116], PPMA (v. 0.6.0) [14], MRBS (v.

1.4.9) [103] and MantisBT (v. 1.1.8) [15] are open-source PHP-based applications

while Dimeshift (commit 261166d) [46], Pagekit (v. 1.0.16) [110], Phoenix (v.

1.1.0) [115] and PetClinic (commit 6010d5) [13] are web apps that cover popular

JavaScript frameworks Backbone.js, Vue.js, Phoenix/React and AngularJS,

respectively.

Note that these nine subject apps are not part of the dataset DS .

2.6.2 Manual Classification (Ground Truth)

We set out to create manually labelled models for each subject, which we can use

as ground truths for comparison of techniques.

First, we use CRAWLJAX to create a master crawl model with default depth-

first exploration strategy, default state abstraction function based on DOM string

equality, and a maximum time budget of one hour, which allow us to capture a

large portion of each app’s state space.

Next, we created state-pairs from the states in each model, as follows. The

21

(a) Near-Duplicate (Nd1): Background Image Changes

Carlos Esteban Betty Davis

(b) Near-Duplicate (Nd2): Dynamic Data

(c) Near-Duplicate (Nd3): Duplicated Functionality

Figure 2.2: Different subclasses of near-duplicate state-pairs.

authors of this work manually classified each state-pair into a clone, near-duplicate

(with subcategories) or distinct category, following the same procedure described

in Section 2.5.2. In addition, we also assigned each state to a bin that represents

a part of the application’s state space devoted to a certain functionality. As such,

each bin is a logical container for all dynamically generated concrete webpages

22

Table 2.2: Subject Set with Manual Classification

B
in

s

St
at

es

Pa
ir

s

C
lo

ne
s

Near-Duplicates

D
is

tin
ct

Nd2 Nd3 Total

Addressbook 25 131 8,515 26 52 2,295 2,347 6,142

PetClinic 14 149 11,175 2 1,433 180 1,613 9,411

Claroline 36 189 17,766 2,707 71 0 71 14,988

Dimeshift 21 153 11,628 375 570 0 570 10,683

PageKit 20 140 9,730 0 904 3,044 3,948 5,782

Phoenix 10 150 11,175 1 25 4,580 4,605 6,569

PPMA 23 99 4851 64 467 0 467 4,320

MRBS 14 151 11,325 27 4,044 0 4,044 7,254

MantisBT 53 151 11,325 2 1,117 0 1,17 10,206

Total 216 1,313 97,490 3,204 8,683 10,099 18,782 75,355

upon crawling (e.g., all webpages related to login). We consider the first concrete

instance of a bin B to be a coverage of B by that crawl model. Additional concrete

instances of a bin are considered clones or near-duplicates of the bin B.

Table 2.2 shows the master crawl characteristics for each web app as well as our

classification outcome. In the rest of this chapter, we refer to the nine master crawls

with manually classified 97.5k state-pairs of the nine apps as subject set (SS), and

to our manual classification and identified bins as ground truth. Our classification

of the subject-set did not find any near-duplicates of category Nd1 in SS as the

subjects did not feature unrelated changes (U) such as advertisements, commonly

found in other kind of websites. MantisBT has the most bins (53), representing a

state-space five times bigger than that of Phoenix, which has the smallest number

of bins (10). Addressbook, PageKit and Phoenix have a high number of near-

duplicates of category Nd3, differently from the other six. To study how different

near-duplicate categories impact web-app model inference, we group these three

subjects referring to them as Nd3-Apps and the other six as Nd2-Apps.

Table 2.3 compares the subjects webpage characteristics in terms of DOM size,

complexity, and image size to DS. For example, the content of a web page in DS

on an average is almost eight times that of the web pages in SS .

23

Figure 2.3: Normalized Distance distribution of labelled pairs in the dataset DS . Within each box-plot, from left to
right: clone, near-duplicate and distinct pairs.

24

Table 2.3: Average webpage characteristics
state (DOM and Screenshot) across the two datasets

DOM IMAGE

Tree Source Content Pixels
(# nodes) (length) (length) (#)

Dataset (DS) 810 105,445 45,575 3,575,837
Subjects (SS) 290 17,655 6,216 1,190,230

2.6.3 Threshold-Based Classification

We aim to evaluate the effectiveness of the near-duplicate detection algorithms in

classifying a given pair as either clone, near-duplicate, or distinct. Essentially, this

is a multi-class classification problem, which we propose to solve using a classifi-

cation function Γ. Function Γ takes as inputs a near-duplicate detection algorithm

f and computes the distance between two given states in a state-pair (p1, p2), clas-

sifying the pair to a category according to a threshold-pair (tc, tn), as follows:

Γ(p1, p2, f , tc, tn)

Cl : f (p1, p2)< tc

D : f (p1, p2)> tn

Nd : otherwise

To evaluate Γ, we need to find appropriate threshold values for each algorithm

that maximize the classification scores.

Threshold Determination

We employ two different approaches, namely, statistical and optimization, to find

a suitable threshold-pair (tc, tn) for each algorithm. In the statistical approach, we

follow a data-based approach in which we use the distance distributions of differ-

ent classes (Figure 2.3). In the optimization approach, instead, we determine the

thresholds that maximize the classification score on a given labelled set, a com-

monly adopted strategy in machine learning for hyper-parameters selection of pre-

dictive models [136].

25

Definition 9 (Statistical Threshold Pair (Stc,Stn)). Threshold Stc is the 3rd quar-

tile (Q3) of the distances calculated by a technique on a given set of clone state-

pairs, whereas, threshold Stn is the median distance on a given set of near-duplicate

state-pairs.

Definition 10 (Optimal Threshold Pair (Oc,On)). Given a labelled set of clones,

near-duplicates and distinct state-pairs, the optimal thresholds Oc and On are re-

trieved by a Bayesian optimization search that maximizes the average F1 classifi-

cation score for Γ over all three classes.

Figure 2.3 shows the distribution of distance values among the three classes, for

each considered algorithm. As the box-plots show, a clear separation between dis-

tance values among classes emerged upon statistical analysis (despite some over-

laps caused by outliers), which motivates using this data to determine statistical

thresholds on RS . For instance, clones (left-most plot for all techniques) have low

distances, whereas distinct pairs have high distance scores. Near-duplicates, as

expected, lie in between those two categories for all 10 techniques considered in

our study. We use quartile data for choosing thresholds since prior work [76] has

shown that the median value is a better estimator of the central tendency than mean

in such cases.

We refer to the four thresholds {Stc DS,Stn DS,Oc DS,On DS} as universal

thresholds, as the state-pairs in DS represent a large set of randomly selected

real-world webpages (see Section 2.5.1).

Classification Accuracy

To address RQ2, we evaluate the algorithms by comparing the effectiveness of Γ

(Section 3.5.1) with corresponding state-pair inputs. We evaluate the effectiveness

of Γ using the F1 measure, which is the harmonic mean of precision Pr (ratio

of correctly classified pairs to total number of classified pairs in each class), and

recall Re (ratio of correctly classified pairs to the actual number of pairs that belong

to the class).

Since we have more than two classes, we treat it as a multi-class classification

problem, and obtain the average F1 over the scores of all three classes (Cl,Nd,D).

However, the datasets are unbalanced, i.e., the ratio of state-pairs of the classes

26

Table 2.4: Estimated statistical (St) and optimal (O) thresholds for clone (c)
and near-duplicate (n) bounds, in dataset DS

Stc DS Stn DS Oc DS On DS

TLSH 0.00794 0.00794 0.01742 0.07052
Levenshtein 0.00638 0.01089 0.00704 0.07029
RTED 0.00000 0.00000 0.00007 0.04099
SimHash 0.00000 0.00000 0.00044 0.00108
BlockHash 0.00000 0.04082 0.00301 0.13371
HYST 6.52E-11 1.29E-09 1.15E-09 1.49E-08
PDIFF 0.00160 0.03800 0.00120 0.20080
PHASH 0.01754 0.17544 0.04018 0.32232
SIFT 0.16691 0.27993 0.10192 0.61876
SSIM 0.01000 0.08000 0.02020 0.15560

are not equal; hence, we employ macro-averaging, to avoid favouring classes with

higher representation [138]. We calculate the F1 score of each algorithm using Γ

with the universal thresholds (see Table 2.4) on two disjoint inputs: 1) a manually

labelled random sample of 500 state-pairs, TS , from the dataset DS , and 2) the

97.5k labelled pairs from SS .

While the scores on TS can validate these thresholds, scores on SS assess the vi-

ability of discovering universal thresholds for a near-duplicate detection algorithm

for unseen web apps.

Findings (RQ2)

Table 2.5 shows the F1 classification scores for all techniques on the two labelled

sets, TS and SS . As a baseline to compare the techniques, we use a stratified-

random-classifier [3] that classifies each state-pair randomly based on proportions

of classes in the labelled set.

All evaluated techniques perform better on TS than SS when universal thresh-

olds are used (+15% on average). This result is not surprising as TS is sampled

from DS , as well as RS from which we derived these thresholds. SS , on the other

hand, is completely disjoint and different from DS (Table 2.3).

Although statistical and optimal thresholds have similar overall average F1

27

Table 2.5: F1 Measure for Statistical and Optimal threshold sets

Algorithm
statistical optimal All

(Stc DS,Stn DS) (Oc DS,On DS)

TS SS Avg TS SS Avg TS SS Avg

TLSH 0.50 0.40 0.45 0.56 0.44 0.50 0.53 0.42 0.48
Levenshtein 0.54 0.46 0.50 0.59 0.48 0.54 0.57 0.47 0.52
RTED 0.50 0.45 0.47 0.57 0.50 0.54 0.53 0.48 0.50
SIMHash 0.48 0.17 0.33 0.48 0.17 0.33 0.48 0.17 0.33
BlockHash 0.62 0.54 0.58 0.66 0.50 0.58 0.64 0.52 0.58
HYST 0.52 0.37 0.44 0.57 0.31 0.44 0.55 0.34 0.44
PDIFF 0.63 0.57 0.60 0.67 0.53 0.60 0.65 0.55 0.60
PHASH 0.59 0.43 0.51 0.63 0.40 0.52 0.61 0.41 0.51
SIFT 0.59 0.44 0.52 0.61 0.47 0.54 0.60 0.45 0.53
SSIM 0.62 0.53 0.57 0.65 0.48 0.56 0.64 0.50 0.57

Average 0.56 0.44 0.50 0.60 0.43 0.51 0.58 0.43 0.51
Random 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32 0.32

scores (0.50, 0.51), it is important to notice that optimal thresholds perform worse

than statistical thresholds on SS , contrary to expectation.

These two findings essentially indicate that, the distance thresholds for optimal

classification of state-pairs can vary based on the characteristics of the particular

web app. The thresholds obtained from a labelled data such as RS are therefore, not

necessarily applicable for a random unseen web app. Hence, universal thresholds

that can classify any given state-pair may not be feasible.

Amongst the techniques, SimHash has the lowest average F1 score (0.17) on

SS , almost 90% worse than the random baseline. The results concur with findings

of a previous study [64], which points to the fact that the algorithm is poor at

distinguishing states that belong to the same app.

On average, five out of top six techniques belong to the computer vision do-

main. PDIFF is the best with a classification F1 score of 0.60, more than 85%
better than the baseline and 13%, 20% better than Levenshtein and TLSH, the

best techniques in DOM and IR categories, respectively. On average, most visual

techniques outperform DOM and IR techniques (with the exception of PHash and

color-histogram). On SS , PDIFF again outperforms all techniques while Block-

28

Hash and SSIM, both visual, are the only other techniques that have an F1 score of

more than 0.50.

2.7 RQ3: Impact on Inferred Models
With RQ3, we evaluate the impact of the near-duplicate detection algorithms in

automated web app model inference.

RQ3.1: How can classification thresholds be applied to state abstraction functions

(SAFs)?

RQ3.2: Can domain knowledge be employed to improve the obtained models?

RQ3.3: How does efficiency of SAFs impact the obtained models?

Specifically, we evaluate the quality of crawl models inferred using each of the

near-duplicate detection algorithms as state abstract function (SAF) (see Definition

14) along with the determined thresholds. CRAWLJAX already includes all DOM-

based algorithms described in Section 2.3.2; we added the computer vision and

information retrieval near-duplicate algorithms within CRAWLJAX as SAFs. More

specifically, we integrated the implementations of PDiff, SIFT, and SSIM from the

open-source computer-vision library OpenCV, and the publicly available versions

of TLSH2 and simhash.3

Since we need to run and analyze many crawl sessions (i.e., nine apps, 10

algorithms, different threshold sets), we limit the crawl session with a maximum

runtime of five minutes.

Model Quality. We measure the quality of a generated model through its F1 score,

the harmonic mean of Pr and Re. Lower precision (Pr) denotes a greater redun-

dancy in the model and is computed as the ratio of unique states (bins) covered

by the model to the total number of states in the model. Recall (Re) quantifies the

application state coverage achieved in the model and is computed as the number of

bins covered by the model to the total number of bins identified by humans, for the

corresponding app, in the ground truth (see Section 2.6.2).

2https://github.com/idealista/tlsh
3https://github.com/albertjuhe/charikars algorithm

29

https://github.com/idealista/tlsh
https://github.com/albertjuhe/charikars_algorithm

The recall Re of a crawl model is highly dependent on the ability of the SAF

to reliably distinguish the distinct state-pairs and its precision Pr on its ability

to exclude near-duplicates and clones of states already present from the model.

Crawlers, however, typically expect one single similarity threshold for deciding

if a state is new to be added to the model; i.e., they do not distinguish between

clone/near-duplicate. Therefore, we frame the problem of finding optimal thresh-

olds for a SAF as maximizing the F1 score of its distinct-pair detection.

2.7.1 Thresholds for SAFs (RQ3.1)

Before we employ the near-duplicate techniques as SAFs in crawling and evaluate

the generated models, which is a manual and time consuming process, we assess

the techniques and the universal thresholds based on the F1 score of the distinct-

pair detection, which indicates the applicability of the techniques as SAFs.

Findings (RQ3.1). In the distinct state-pair detection scores from RQ2 shown in Ta-

ble 2.6, scores on TS allow us to assess the ability of a technique to distinguish dis-

tinct state-pairs in the wild, while SS lets us simulate each technique as a SAF on

generated models captured in our subject-set. In contrast to the RQ2 results, where

both the threshold sets had better average classification F1 on TS compared to SS ,

Table 2.6 shows that statistical threshold had better distinct state-pair detection F1

of 0.78 on SS than 0.73 in TS . Optimal threshold On DS, which is higher/stricter

than Stn DS, in terms of actual threshold value, as shown in Table 2.4, has a poor

recall on SS (53%) compared to TS (81%). Also in TS statistical threshold has the

highest recall, but by sacrificing precision; the optimal threshold emerges with a

better overall F1 score through a 25% better precision on TS . The same threshold,

however, could not improve precision in SS but has 50% lower recall.

As we optimized our threshold to be stricter to fit the distribution in DS , we

ended up misclassifying distinct pairs to be near-duplicates in SS because of the

differences in the distributions between the two data-sets.

30

Table 2.6: Distinct pair (Pr, Re, F1) on existing datasets

TS SS Average

Pr Re F1 Pr Re F1 Pr Re F1

On DS 0.81 0.81 0.80 0.89 0.53 0.64 0.85 0.67 0.72
Stn DS 0.63 0.90 0.73 0.87 0.76 0.78 0.75 0.83 0.76

As we pointed out in RQ2, these results show the infeasibility of finding univer-
sal thresholds as the distances for state-pairs are highly influenced by the intrinsic
characteristics of the web app they belong to.

2.7.2 Using Application Knowledge (RQ3.2)

These results for universal thresholds prompted us to investigate whether having

knowledge of the web app characteristics helps in selecting better thresholds to

improve the detection rates of the techniques.

We use the manually labelled models (see Section 2.6.2) in the subject-set (SS)

for each app to represent application knowledge. In order to use this application

knowledge, we apply the near-duplicate threshold definitions in Definition 9 and

Definition 10 to each subject in SS to derive Stn SS and On SS respectively. In ad-

dition to these two thresholds, through initial experiments, we have observed that

category Nd3 near-duplicates overlap with distinct (Di) pairs and it is not possible

to design a threshold that can distinguish them. We therefore created a new thresh-

old definition that sacrifices the precision of distinct pair detection by allowing

misclassification of Nd3 near-duplicates as Di for better recall (Re).

Definition 11. Stn3 is defined as the median of the data distribution of manually

labelled near-duplicates {Nd1 ∨Nd2}. In other words, Stn3 is Stn computed after

excluding Nd3 near-duplicates.

We refer to these thresholds obtained by applying application knowledge in SS

for each algorithm as app-specific thresholds. We crawled each of our subjects

with two universal and three app-specific thresholds with each technique as a SAF,

separately, and assess the quality of the generated models.

31

Findings (RQ3.2). Table 2.7 shows the average F1 of crawls for all algorithms for

each threshold. Overall, as expected, the universal optimal near-duplicate thresh-

old On DS has the worst score of 0.24; only half of the 0.42 scored by the best

threshold On SS, the optimal threshold derived with application knowledge. On

average, app-specific thresholds improve the model quality by 34% compared to

universal thresholds underlining the need to consider app characteristics to choose

thresholds. For Nd3-Apps, it can be seen that Stn3 SS derived using the statisti-

cal Definition 11 significantly (90%) improves the F1 score over the Stn SS, show-

ing that threshold design needs to consider fine-grained near-duplicate categories

prevalent in the app under test.

Application knowledge improves generated models.

32

Table 2.7: Inferred model F1 score

Universal App-Specific
St

n
D

S

O
n

D
S

A
vg

St
n

SS

St
n3

SS

O
n

SS

A
vg

AddressBook 0.33 0.27 0.30 0.17 0.46 0.41 0.34

PetClinic 0.36 0.25 0.31 0.50 0.50 0.52 0.51

Claroline 0.30 0.18 0.24 0.42 0.42 0.44 0.43

DimeShift 0.31 0.22 0.26 0.33 0.33 0.38 0.34

PageKit 0.30 0.27 0.29 0.27 0.39 0.37 0.34

Phoenix 0.44 0.29 0.37 0.24 0.47 0.42 0.38

PPMA 0.31 0.19 0.25 0.49 0.49 0.51 0.49

MRBS 0.37 0.35 0.36 0.43 0.43 0.46 0.44

MantisBT 0.24 0.18 0.21 0.26 0.26 0.27 0.26

Average 0.33 0.24 0.29 0.34 0.41 0.42 0.39

Nd2-Apps 0.32 0.23 0.27 0.40 0.40 0.43 0.41

Nd3-Apps 0.36 0.28 0.32 0.23 0.44 0.40 0.35

33

Table 2.8: Inferred model F1 for each algorithm
for selected thresholds

T
hr

es
ho

ld
s

A
pp

s

T
L

SH

SI
M

H
as

h

L
ev

en
sh

te
in

R
T

E
D

B
lo

ck
H

as
h

PH
A

SH

H
Y

ST

PD
IF

F

SI
FT

SS
IM

Av
er

ag
e

A
ll

Fi
ve All 0.10 0.05 0.47 0.62 0.46 0.39 0.41 0.34 0.34 0.35 0.35

Nd2 0.10 0.04 0.48 0.62 0.47 0.39 0.41 0.36 0.31 0.39 0.36
Nd3 0.10 0.06 0.43 0.62 0.43 0.40 0.41 0.29 0.39 0.28 0.34

O
n

SS

All 0.15 0.08 0.48 0.55 0.54 0.49 0.54 0.45 0.42 0.51 0.42
Nd2 0.17 0.08 0.53 0.61 0.52 0.49 0.58 0.46 0.37 0.52 0.43
Nd3 0.10 0.10 0.37 0.43 0.58 0.49 0.45 0.42 0.52 0.51 0.40

St
n3

SS All 0.09 0.03 0.46 0.67 0.57 0.50 0.55 0.43 0.36 0.48 0.41
Nd2 0.08 0.02 0.47 0.62 0.55 0.50 0.53 0.44 0.35 0.46 0.40
Nd3 0.10 0.07 0.44 0.76 0.60 0.51 0.60 0.42 0.37 0.51 0.44

34

Table 2.8 shows the average F1 scores for each algorithm for five minute crawls

on our subjects. RTED consistently outperforms other techniques with an F1 score

of 0.62 averaged over all five thresholds. it is 29% better than Levenshtein, the next

best algorithm.

The results for visual techniques in Table 2.8 are contrary to our expectation,

given that, in RQ2, they convincingly outperformed the DOM and IR techniques in

state-pair classification using Γ. Apart from being slow compared to DOM based

algorithms as shown in Table 2.9, visual techniques, rely on characteristics that

cannot directly capture differences corresponding to web elements (e.g., SIFT key-

points). Techniques such as RTED, which use a DOM characteristic on the other

hand, can reliably capture differences in individual web elements between given

two web pages, essential to be able to classify states similar to a human tester.

In IR techniques, SimHash is not able to distinguish even two completely dif-

ferent states in our subject-set as already seen in RQ2. TLSH on the other hand,

fails to calculate digests for app states of our subjects due to lack of enough com-

plexity as shown in Table 2.3 — the content in our subjects is 1/9th of the content

size in the wild. Therefore, we exclude SimHash and TLSH from further analysis.

2.7.3 Impact of Efficiency (RQ3.3)

An analysis of visited states per minute or speed of the algorithms, shown in Ta-

ble 2.9, seems to suggest that faster algorithms such as RTED (25 states per minute)

could explore more states in a given crawl time and improve its Re wheras, slower

algorithms such as PDiff, which could only explore four states per minute on an

average are at a clear disadvantage.

Table 2.8 shows that for all remaining eight techniques with the exception of

SIFT, On SS for Nd2-Apps and Stn3 SS for Nd3-Apps is the best threshold configu-

ration.

Table 2.9 shows the statistics of the 5-min crawls for each technique with their

best threshold configuration. Coverage (Re) data suggests that 5 minutes was not

enough to cover all of the app state-space. Therefore, we experiment with a longer

crawl time, i.e., 30 minutes. Given the exponential nature of increase in manual

effort to analyze larger crawl models, we limit this experiment to the best perform-

35

Table 2.9: Techniques Speed and Inferred model (Re, Pr, F1)
for best 5-minute crawls

L
ev

en
sh

te
in

R
T

E
D

B
lo

ck
H

as
h

PH
A

SH

H
Y

ST

PD
IF

F

SI
FT

SS
IM

Speed 11 25 17 16 16 4 5 8
Recall 0.42 0.61 0.49 0.49 0.55 0.30 0.28 0.39
Precision 0.84 0.79 0.75 0.79 0.72 0.91 0.71 0.85
F1 0.54 0.66 0.54 0.52 0.58 0.44 0.39 0.51

Table 2.10: Inferred model F1 for 30-Minute crawls

Apps B
lo

ck
H

as
h

H
ys

t

L
ev

en
sh

te
in

PD
iff

R
T

E
D

SS
IM

All 0.51 0.57 0.53 0.52 0.62 0.56
Nd2 0.57 0.62 0.59 0.51 0.66 0.52
Nd3 0.39 0.47 0.42 0.56 0.52 0.64

ing techniques tuned with thresholds from the best 5-minute crawls presented in

Table 2.9. We select the top four techniques based on F1 scores, however, as dis-

cussed before, since the slower algorithms were placed at a disadvantage in the

5-minute crawls, we also include PDiff and SSIM that produced models with the

best precision (Pr) scores of 0.91 and 0.85 (respectively 12% and 6% better than

RTED which has the best F1 score of 0.66).

Findings (RQ3.3). Average F1 scores shown in Table 2.10 for 30 minute crawls

indicate that, when tuned correctly and given enough time, Histogram, BlockHash,

RTED and Levenshtein can all perform well on Nd2-Apps meaning that they man-

aged to discard near-duplicates of type Nd2 reasonably well. However, it is surpris-

ing to see that PDiff and SSIM score higher than all of them on Nd3-Apps. Thus,

we decided to analyze how F1 has changed over the 30 minutes for Nd3-Apps as

36

opposed to the Nd2-Apps.

A plot of F1 of the model over its states percentage for RTED crawls is shown

in Figure 2.4. The figure highlights that for Nd3-Apps, the model deteriorates

as states being added are near-duplicates, mostly of type Nd3, while, the mod-

els of Nd2-Apps seem to stabilize as Nd2 near-duplicates are being detected and

discarded. During the manual analyses of models, we observed that the Nd3 near-

duplicates are dynamically created, typically through user-interactions that result

in addition/removal of web elements whose functionality already exists in the state

(e.g., addition/deletion of new rows in a table). Not only is this newly created state

a near-duplicate that will eat into precious testing time, but each time the crawler

revisits this state, it may invoke the same creation path adding even more duplicates

resulting in a never-ending loop.

Efficiency may negatively impact the generated model in time-limited crawls

for Nd3 apps.

Given that RTED is the best algorithm and was fine-tuned to produce best

model for each application, this surprising revelation points to the limitation of

existing crawlers and threshold based SAFs and shows that threshold based crawl-

ing may never produce an accurate and complete model of modern web apps with

dynamic Nd3 near-duplicates. We therefore think that future SAFs should incor-

porate characteristics that represent functionality and crawlers should be designed

to utilize near-duplicate detection to establish the nature of duplication instead of

quantifying the computed differences to actively guide the exploration to discover

newer functionality.

2.8 Threats to Validity
External validity threats concern the generalization of our findings. We consid-

ered only nine web apps and experiments with other subject systems are neces-

sary to fully confirm the generalizability of our results, and corroborate our find-

ings. We tried to mitigate this threat selecting real-world web apps with differ-

ent sizes, pertaining to different domains, and adopted in previous web testing

37

Figure 2.4: Normalized F1 over %(states in model)
during 30-minute crawls of RTED

work [22, 23, 144]. Another threat concerns the selection of thresholds for near-

duplicate detection techniques, whose results may not generalize to other algo-

rithms. We mitigated this threat by selecting 10 techniques from three different

domains: web testing, computer vision and information retrieval. Internal validity

threats concern uncontrolled factors that may have affected our results. A possible

threat is represented by the manually created ground truth, which was unavoidable

because no automated method could provide us with the ideal classification of web

pages. To minimize this threat, the authors of this work created, in isolation, a

ground truth. Then, the two established a discussion to produce a single ground

truth for each web app.

For reproducibility of the results, we made our tool, datasets and used subject

systems available [168], along with required instructions.

2.9 Related Work
A large body of research has addressed the analysis of web sites structure via clus-

tering for clone detection and duplicate removal of web pages [25, 27, 37, 43–

45, 64, 86, 122, 162].

Henzinger [64] performed an evaluation of two near-duplicate detection algo-

rithms based on shingling on a large dataset of 1.6B web pages. Manku et al. [86]

38

followed up on the work using simhash to detect near-duplicates for web infor-

mation retrieval, data extraction, plagiarism and spam detection with promising

results. Fetterly et al. [43] study the evolution of near-duplicate web pages over

time and conclude that near-duplicates have little variability over time, and two

pages that have been found to be near-duplicates of one another will continue to be

so for the foreseeable future.

Our study is different from the above work as we aim to detect near-duplicates

within web apps and not across different web apps. Regarding detection of within

app near-duplicates, Calefato et al. [27] propose a method to identify

near-duplicates as well as functional clone web pages based on a manual visual

inspection of the GUI. Crescenzi et al. [37] propose a structural abstraction for

web pages as well as a clustering algorithm that groups web pages based on this

abstraction. Di Lucca et al. [44, 45] evaluate the Levenshtein distance and the tag

frequency methods for detecting near-duplicate web pages. Eyk et al. apply

simhash and broders near-duplicate detection within Crawljax [52].

In mobile testing research, researchers [8, 18] used mobile GUI widget hierar-

chies in order to design optimal state abstractions. Our study did not consider such

techniques as they are not directly applicable for web applications.

To the best of our knowledge, our work is the first one to study different near-

duplication detection algorithms (from different fields) as SAFs in a web crawler.

This work is the first to propose a systematic categorization of near-duplicates in

web apps, from a functional E2E testing perspective and to study the impact of

near-duplicate detection on generated web application models and web testing.

Moreover, our work is the first to discuss selection of thresholds for near-duplicate

detection, an important first step.

2.10 Conclusions and Future Work
Automatically asserting the equality of two complex web pages is a difficult prob-

lem, which the state abstraction function of a crawler needs to solve at runtime

during the exploration. The problem is further complicated by the presence of

near-duplicates that need to be detected and mapped to the logical pages in order

to produce meaningful crawl models.

39

We study ten existing near-duplicate detection techniques from three different

domains and compare their effectiveness as state abstraction functions in a crawler.

Our results show that near-duplicates characterized by dynamic data, as catego-

rized in the study, are detectable when application knowledge is employed. How-

ever, near-duplicates characterized by duplication of web elements, that are often

a by-product of state exploration, cannot be handled by threshold-based model in-

ference.

Future work includes devising novel types of abstraction functions, incorpo-

rating both page structural and visual characteristics in a single hybrid solution to

detect different kinds of near-duplicates.

40

Chapter 3

Fragment-Based Test Generation
For Web Apps

3.1 introduction
Regression testing of modern web apps is a costly activity [152] in practice, which

requires developers to manually create test suites, using a combination of program-

ming and record/replay tools such as Selenium [127]. In addition, maintaining

such test suites is known to be costly [58, 93] as even minor changes of the app

can cause many tests to break; for example, according to a study at Accenture [58]

even simple modifications to the user interface of apps result in 30–70% changes

to tests, which costs $120 million per year to repair. When the test maintenance

cost becomes overwhelming, whole test suites are abandoned [33].

Given the short release cycles of modern web apps and maintenance costs of

manually written tests, automatic generation of regression test suites seems a viable

alternative. However, the effectiveness of web test generation techniques [23, 97,

99] is limited by the ability to obtain an accurate and complete model of the app

under test. Manual construction of such models for complex apps is not practical.

Automated model inference techniques [96] trigger user actions such as clicking

on buttons and record corresponding transitions between states in the web app to

build a graph-based model.

One particular challenge here is the presence of near-duplicate states in web

41

apps, which can adversely impact the inferred model in terms of redundancy and

adequacy [173]. Near-duplicates are states that are similar to each other in terms

of functionality [64].

Another important challenge is the generation of test assertions. Two factors

directly contribute to the challenge here, namely effectiveness and tolerance/ro-

bustness, i.e., regression test assertions should be able to detect unexpected app

behavior, but at the same time, be tolerant to minor changes that do not affect the

functionality.

Both model inference and test oracle generation thus require suitable abstrac-

tions to produce effective and robust test suites. Existing techniques generate re-

gression tests that compare the whole page as seen during testing with an instance

of the page recorded on a previous version [97, 127]. Our insight is that, such

whole-page comparison techniques, although effective at detecting changes, are

not tolerant enough to handle near-duplicates and make the test suites fragile. Test

fragility is known to be a huge problem in web testing [73].

In this work, we propose a novel state abstraction that employs fine-grained

fragments to establish functional equivalence. We conjecture that a web page is

not a singular functional entity and thus partitioning it into separate fragments can

help in determining functional equivalency when comparing different states. Us-

ing this novel state abstraction, we have developed a technique, called FRAGGEN.

Our fragment-based analysis enables us to (1) prioritize available actions to diver-

sify exploration, (2) accomplish state comparison without the need for manually

selecting thresholds, a manual tedious fine-tuning process, required for all exist-

ing techniques [173]; our state comparison algorithm leverages both structural and

visual properties of the page fragments to identify near-duplicate characteristics

specific to the web app under test during model inference, and (3) generate test

assertions that operate at the fragment level instead of the whole page level, and

apply fragment memoization to make them much more robust to state changes that

should not break regression tests.

42

New Delete All

Address Book

Name -Email

State1

New Delete All

Address Book
Name -Email

State2

Add
Cancel

New Delete All

Address Book

jdoe@abc

Email

John Doe

Name

Delete

State3

New Delete All

Address Book

jdoe@abc

Email

John Doe

Name

Delete

State4

Add
Cancel

New Delete All

Address Book

Emma Wang ewg@xyz

John Doe

Name

jdoe@abc

Email

Delete

Delete

State5

New Delete All

Address Book

ewg@xyz

Email

Emma Wang

Name

Delete

State6

Figure 3.1: Motivating example: app states with actionables highlighted.

43

Our empirical evaluation shows that FRAGGEN is able to outperform whole-

page techniques in classifying state-pairs and identifying near-duplicates. On a

dataset of 86,165 manually labelled state-pairs, FRAGGEN detected 123% more

near-duplicates on average and 82% more than the best performing existing tech-

nique. When employed to infer web app models, FRAGGEN is able to diversify ex-

ploration using fine-grained fragment analysis to produce models with 70% higher

precision and 62% higher recall on an average compared to the state-of-the-art

technique. In addition, our evaluation shows that FRAGGEN generated test suites

that are better suited for regression testing. Where existing techniques generated

brittle test suites with nearly 17% test actions that fail even on the same version of

the web app, FRAGGEN generated reliable test suites with nearly 100% successful

test actions on the same version of the web app, and detected more app changes

with fewer false positives when run on different application versions. When eval-

uated through mutation analysis, FRAGGEN’s test oracles could detect 98.7% of

visible state changes while being tolerant enough to ignore 90.6% of equivalent

mutants.

This work makes the following contributions:

• A technique for determining state equivalence (i.e., distinct, clone, near-

duplicate) at the fragments-level, without a need for setting thresholds.

• A state abstraction technique that uses the structural as well as visual prop-

erties of fragments for equivalence checking.

• A novel model inference approach that employs page fragments to explore

the web application state-space.

• A fine-grained fragment-based test assertion generation for effective and re-

liable regression testing.

• The evaluation and implementation of FRAGGEN, which is publicly avail-

able [169].

44

3.2 Background and Motivation
In this section, we provide the background information on web app testing and

analysis, and introduce key terms and concepts that are used in the rest of the

chapter.

We use a running example, shown in Figure 3.1, based on one of our subject

systems [116]. The example web app is a single page application which provides

functionality to add, view, modify and delete addresses in a database through “ac-

tionable” web elements such as buttons and links, highlighted in their correspond-

ing pages.

3.2.1 Automatic Test Generation for Web Apps

In this subsection, we describe automated model inference through state explo-

ration and model-based test generation employed by existing techniques and their

limitations.

Model inference. Automated model inference is an iterative process of exercis-

ing the functionality of a given web app by triggering events on actionable ele-

ments (α), such as button clicks, and capturing the resulting state transitions (A) as

a graph-based model (M). Formally:

Definition 12 (State Transition (Ax)). is a tuple (Ssrc, αx, Stgt) where exercising

an actionable αx in a state Ssrc produces a transition to state Stgt .

Definition 13 (Application Model (M)). is a directed graph ({S1..Sn}, {A1..Am})
with app states (Sa) as nodes and state transitions (Ax) as labelled directed edges

between nodes.

Current model inference techniques rely on a state abstraction function (SAF),

that determines similarity between two given states p1 and p2 in order to avoid re-

dundancies in the captured model and duplication of exploration effort. Formally:

Definition 14 (State Abstraction Function (SAF)). is a pair (d f unc, t), where

d f unc is a similarity function that computes the distance between any two given

web pages p1, p2, and t is a threshold defined over the output values of d f unc.

SAF determines whether the distance between p1 and p2 falls below t.

45

Figure 3.2: Model inference for the motivating example.

State2

State3State4
State1

New

Cancel

Delete

Add

URL

Delete
All

New

State5

Add

Figure 3.3: Inferred model of the motivating example.

SAF(d f unc, p1, p2, t)

true : d f unc(p1, p2)< t

f alse : otherwise

Figure 3.2 illustrates the steps of model inference for our motivating app, as-

suming a depth-first exploration strategy is followed. In the first iteration, labelled

i, the technique loads the app in the browser using its URL, and stores the corre-

sponding state as the root node in the model. Thereafter, each action performed

on the web app can be either exploration step or a back-tracking step. In each ex-

ploration step, depicted in solid arrows, an unexplored actionable (αnew) from the

current state is invoked and the resulting state is added to the model if it is deemed

46

to be different from every existing state in the model by a SAF as defined in defin-

tion 14. The observed state transition is then recorded as a directed edge between

the source and target states in the model.

An iteration ends when the current state is fully explored and the next iteration

starts by choosing an existing state in the model with unexplored actionables. In

order to reach the selected state, back-tracking actions, indicated with broken ar-

rows, are performed by using the transitions that are already recorded in the model.

For example, iteration ”i” ends upon reaching state S1, which is fully explored at

that point. The next iteration ”j” then starts by choosing and navigating to state S2,

by using recorded transitions. Iteration ”l” in Figure 3.2 continues exploration by

choosing one of the unexplored states S3, S5 and S4.

Termination and stopping criteria. Model inference techniques provide options

to configure stopping criteria such as exploration time limit in order to end the

inference process. Termination on the other hand happens when the technique

decides that no unexplored actionables are left to exercise.

Figure 3.3 shows the model inferred for our motivating example at the end of

iteration ”k”.

The model inference has not terminated at this point because there are unex-

plored actionables available.

Definition 15 (Path (P)). A sequence of transitions (A0...An) is a P if for 0¡=i¡n,

Ai, Ai+1 ∈ P =⇒ Ai(Stgt) = Ai+1(Ssrc).

Test generation. Once a model of web app is available, model-based test gen-

eration provides a set of paths {P1, Pm}, with adequate coverage of states and/or

transitions in the model, where, each path P (formally defined in 15) is a sequence

of recorded transitions. Listing 4.1 shows a test case T generated from the inferred

model of Figure 3.3. Each test case starts by loading the URL of the app and ver-

ifying the browser state to be the S0
src, i.e. the source state of the first transition

of the path. Thereafter, for each transition (Ax), a test action is derived from the

actionable αx and a test oracle is added for the target state S x
tgt . The test case in

Listing 4.1 is examining the path P : [S1, αList , S2, αnew, S3, αadd , S4].

47

Listing 3.1: Generated test case
def Test1 () :

d r i v e r . loadURL (” Base URL ”)
asser t (isEqual (d r i v e r . cu r ren tS ta te , s ta te1)
d r i v e r . f indElement (” L i s t ”) . c l i c k ()
asser t (isEqual (d r i v e r . cu r ren tS ta te , s ta te2)
d r i v e r . f indElement (”New”) . c l i c k ()
asser t (isEqual (d r i v e r . cu r ren tS ta te , s ta te3)
d r i v e r . f indElement (” add ”) . c l i c k ()
asser t (isEqual (d r i v e r . cu r ren tS ta te , s ta te4)

3.2.2 Automatic Test Generation Challenges

The main challenge in model inference of web apps is the presence of a large num-

ber of nearly identical or near-duplicate web pages, which the existing techniques

cannot identify effectively and as a result generate sub-optimal models.

While the presence of near-duplicates in the inferred web app model leads to

generation of redundant test cases, it is also indicative of wasted exploration effort

that could be spent discovering unseen states. Typically, exploration of similar ac-

tions in near-duplicate states does not improve functional coverage of the model

but instead can lead to creation of even more near-duplicates, as can be seen even

in our simple example app. In our example, the states S3, S5 and S6 shown in Fig-

ure 3.1 are all considered functional near-duplicates as they all offer similar web

app functionality, and model inference may never terminate if similar actions αNew

and αAdd are explored in each near-duplicate state.

In our previous work, we proposed [173] to categorize a given pair of web

pages as either clone (Cl), near-duplicate (Nd) or distinct (Di) by labelling the

observed changes between them. We formally defined Near-duplicates in web

testing as:

Definition 16 (Functional Near-Duplicate (Nd)). A given state-pair (p1, p2), is

considered to be a functional near-duplicate if the changes between the states do

not alter the overall functionality of either state.

Near-duplicates are further divided in three categories based on the nature of

changes between the two pages:

• Cosmetic (Nd1-data): Changes such as different advertisements, that are

48

Table 3.1: Raw distances of state-pairs

st
at

e-
pa

ir

RT
E

D
[1

12
]

Le
ve

ns
ht

ei
n

[7
5]

TL
SH

[1
08

]

Si
m

H
as

h
[2

9]

H
YS

T
[1

50
]

B
lo

ck
H

as
h

[1
75

]

PH
A

SH
[1

79
]

PD
IF

F
[1

78
]

SI
F

T
[8

0]

SS
IM

[1
0]

H
um

an

DOM VISUAL

(S3, S6) 0.0 0.002 1 0 91 0 0 0.0006 5 0.003 Nd2
(S1, S3) 0.13 0.08 36 0 9751 4 2 0.008 14 0.04 Di
(S3, S5) 0.16 0.12 106 0 27683 5 2 0.045 14 0.05 Nd3

irrelevant to functionality of web app.

• Dynamic Data (Nd2-data): Changes are limited to data while the page struc-

ture remains the same. Example (S3, S6).

• Duplication (Nd3-struct): Addition or removal of web elements equivalent

to existing web elements. Example (S3, S5).

Researchers have employed various similarity functions and abstractions for

web pages based on their DOM tree-structures [44, 95], and visual

screenshots [32, 84, 85, 129] to perform state comparison. However, a study [173]

on near-duplicates in web testing shows that the whole-page based SAFs currently

being used by existing model inference techniques cannot reliably identify

near-duplicates and as a result infer imprecise and incomplete models.

To illustrate the limitations of the SAFs currently being used, we analyzed

three state-pairs of our example app in Table 3.1. For each of the three state-

pairs, the table shows the distance between states computed by each of the ten

state abstraction techniques and the human classification process followed in the

study [173].

Consider the states S1, S3, S5, and S6 from Figure 3.1, all of which display

stored addresses. When examined manually, S1 is considered distinct (Di) from S3,

S5 and S6 as it does not contain table row functionality to select an address entry.

49

However, S3 and S6 differ only by the data in a table row, which does not alter the

functionality and hence they are considered as functional near-duplicates. Further,

even-though S5 contains extra table rows, they only duplicate the functionality of a

single row in S3. Therefore, a human tester would label state-pairs such as (S3, S5)

to be functional near-duplicates.

The 10 comparison techniques, as shown in the Table 3.1, consider the state-

pair (S3, S5) to be the farthest apart of the four state-pairs even though they are

functionally equivalent. If the distance thresholds were set to be higher, states such

as S3 might be discarded from the model as they will be considered equivalent to

S1, making the model incomplete. On the other hand, lower thresholds would make

the model imprecise with the presence of states such as the state S5. This shows that

threshold-based whole-page comparison cannot produce optimal web app models.

Test breakages. In addition to model inference, similarity between two given

web page states is crucial in generating effective test oracles as well. If the state

comparison techniques are sensitive to minor changes unrelated to functionality in

modern apps, test oracles can break and result in a high number of false positive test

failures. False positive test failures necessitate costly manual analysis and impact

the effectiveness of automated regression testing techniques.

We identified duplicated functionality within a web page to be the root cause of

Nd3-struct near-duplicates that make existing model inference and test generation

techniques impractical for modern web apps. This observation that “whole-page

techniques” cannot detect Nd3-struct near-duplicates motivated us to investigate

the idea of decomposing a given web page into smaller fragments for a more fine-

grained analysis.

3.2.3 Page Fragmentation

Page fragmentation, also known as page segmentation, is the decomposition of a

given web page into smaller fragments or segments. In existing research, the most

popular downstream tasks such as content extraction that apply page fragmenta-

tion relate to human consumption of web pages and focus on extracting textual

semantics.

The ”VIsion-based Page Segmentation algorithm” (VIPS) [26], proposed in

50

2003, is the de-facto standard for web page segmentation. A recent large scale

empirical study [69] compares five page segmentation techniques using a dataset

of 8,490 web pages and concludes that VIPS is still the overall best option for page

fragmentation. VIPS employs a top-down approach, where, for each HTML node

in the DOM [1], a DoC (Degree of Coherence) is assigned to indicate coherence

of the content in the block based on visual perception. Then it tries to find the

separators between these extracted blocks. Here, separators denote the horizontal

or vertical lines in a webpage that visually cross with no blocks. Finally, based

on these separators, it extracts a hierarchy of fragments. Each extracted fragment

visually conforms to a rectangle in the page between two horizontal and vertical

separators. All the DOM nodes that are part of the rectangle are then considered to

be part of the fragment. We refer the interested reader to the original VIPS paper

for more details of the algorithm [26].

In the next section, we explain how we leverage page fragmentation to over-

come existing challenges in model inference and regression test generation for

modern web apps.

3.3 Approach
At a high level, our approach, called FRAGGEN, relies on the insight that a web

page is not a singular functional entity, but a set of functionalities, where each

functionality may be available in more than one page. Based on this insight, we

propose a novel state abstraction that defines a page as a hierarchy of fragments,

where each fragment represents a semantic sub functionality. Our model inference

technique then employs this state abstraction to detect near-duplicates and optimize

the state space exploration by prioritizing actions that belong to unique page frag-

ments in each page. From the inferred model, we subsequently generate test cases

with robust assertions that rely on our fragment-based abstraction and are capable

of reporting warnings in addition to errors by utilizing knowledge gained during

model inference. Next, we describe our state abstraction, followed by our model

inference, and test generation techniques.

51

F1

New Delete All

Address Book

jdoe@abc

Email

John Doe

Name

Delete

F1

New Delete All

Address Book

Emma Wang ewg@xyz

John Doe

Name

jdoe@abc

Email

Delete

Delete

F2 Address Book

F2 Address Book

F5
Name -Email

F5
Name -Email

F6

John Doe jdoe@abc Delete

F6

John Doe jdoe@abc Delete

F7
Emma Wang ewg@xyz Delete

F4
New Delete All

F3

Emma Wang ewg@xyz

John Doe

Name

jdoe@abc

Email

Delete

Delete

F8 New

F9 Delete All

F7 New

F8 Delete All

F3

jdoe@abc

Email

John Doe

Name

Delete
F12 John Doe

F14 Delete

F13 jdoe@abc

F11 -

F10 Email

F9 Name

F16 Emma Wang

F18 Delete

F17 ewg@xyz

F4
New Delete All

F13 John Doe

F15 Delete

F14 jdoe@abc

F12 -

F11 Email

F10 Name

State5

State3

Figure 3.4: Fragment-based state comparison in FRAGGEN

52

3.3.1 Fragment-based State Abstraction

We consider a web page or a state as a hierarchy of fragments, where, each frag-

ment is a portion of the state and represents functionalities offered by its child

fragments.

Definition 17 (Application State (S)). is a tuple (D , V , Froot) where D is the

dynamic DOM [1] of the page, V is the screenshot of the page and Froot is the root

fragment.

The root fragment, Froot , of a state S is the full page, and has no parent. It

has all the nodes in the DOM tree D of S . Therefore, comparing two states is the

same as comparing their root fragments.

Definition 18 (Fragment (F)). is a tuple (N , V , {Fc0
,Fc1

. . .}) where

N is the set of DOM nodes of F , V is the screenshot of F and each Fci
is a

child fragment.

Comparing fragments. Using this fragment-based representation, we classify a

given state-pair by comparing the fragments they are composed of. Figure 3.4

shows the fragment hierarchies for states S3 and S5 from our motivating example

in Figure 3.1. Our fragment-based classification, which takes both structural and

visual aspects into account is shown in Algorithm 1. The structural aspect (line

2) uses the nodes on the DOM subtree of the fragment after pruning textual con-

tent and attributes. The visual aspect (line 4) uses a localized screenshot of the

fragment.

As algorithm 1 shows, we combine structural and visual analysis to identify

near-duplicates. Using visual similarity instead of element attributes and textual

data from DOM allows us to disregard changes in the DOM that have no visual

impact. In addition, we found that visual comparison is effective in identifying

changes in dynamic web elements such as carousels that use only JavaScript and

CSS.

FRAGGEN classifies two fragments to be clones if their structural and vi-

sual properties are exactly the same. We employ APTED [113] and Color His-

togram [150] to compare the structural and visual aspects of the fragments, respec-

tively. These techniques have been employed individually as state abstractions for

53

Algorithm 1: Fragment-based classification
1 Function Classify(F1, F2):

// clone(Cl),distinct(Di),Nd2-data,Nd3-struct
Output: class

2 Ndi f f ←− treediff (F1.N , F2.N)
3 if Ndi f f = φ then /* Matching DOM */
4 Vdi f f ←− imagediff (F1.V , F2.V)
5 if Vdi f f = φ then /* Matching Screenshots */
6 return Cl /* class: clone */
7 else
8 return Nd2-data /* class: Nd2-data */
9 end

10 else /* Check Child Fragments? */
11 return MapChildFragments(Ndi f f ,F1, F2)
12 end
13 End Function

14 Function MapChildFragments(Ndi f f ,F1, F2):
// distinct(Di), Nd3-struct
Output: class
/* Mapping child fragments for every changed node */

15 foreach n ∈Ndi f f do
16 found←− false
17 Foth ←− (n ∈ F1.N) ? F2 : F1
18 Fclo ←− closest (n)
19 foreach Fchi ∈ Foth.childen do
20 if Classify (Fclo, Fchi) ! = Di then
21 found← true /* Found mapping */
22 end
23 end
24 if ! found then /* No mapping found */
25 return Di /* class: Distinct */
26 end
27 end
28 return Nd3-struct /* class: Nd3-struct */

29 End Function

whole web pages in the literature [129, 173], but have not been combined to de-

termine state equivalence. When the fragments differ visually, but are found to be

structurally equivalent, FRAGGEN considers the fragments to be near-duplicates of

the type Nd2-data (see Definition 16).

In case they differ structurally, as root fragments of S3 and S5 do for example

shown in Figure 3.4, the classification is performed by a mapping function (lines

54

14-28) that extracts all changed DOM nodes between the two fragments and maps

the corresponding fragments in the hierarchy.

Given a pair of fragments F1 and F2 and a list of changed nodes between the

two fragments Ndi f f , the function MapChildFragments gets the closest fragment

Fclo for each changed DOM node (n). The closest fragment for a DOM node is

the smallest child fragment in the fragment hierarchy containing n. Thereafter,

in lines 19-23, it attempts to find an equivalent fragment for the closest fragment

in the fragment hierarchy of the other fragment. For example, if n1 is a changed

node that belongs to F1, with Fclo as its closest fragment, then Foth is F2 and we

attempt to find if any of the child fragments of F2 are equivalent to Fclo. If the

closest fragment for any of the changed DOM nodes cannot be mapped to a child

fragment of the other fragment (lines 24-26), we declare the two given fragments

F1 and F2 to be distinct (Di). Otherwise, the two fragments are considered to be

near-duplicates of type Nd3-struct.

In the example shown in Figure 3.4, when classifying the root fragments for S3

and S5, MapChildFragments would be called to classify F3 of states S5 and S3. All

the changed DOM nodes (Ndi f f) between the two fragments belong to F7 in S5, As

the function iterates (line 19) through child fragments to find a mapping, eventually

F7 of S5 will be found to be equivalent to F6 of S3. As a result, the fragment pair

would be classified as Nd3-struct. As the rest of the fragments are equivalent, the

overall state-pair (S3, S5) would be classified as Nd3-struct near-duplicates as well.

When the fragments containing changed DOM nodes cannot be mapped,

FRAGGEN considers the two states to be distinct. One such example is the

state-pair (S1, S3), which is classified to be distinct because the table row in S3

contains no equivalent fragment in S1. On the other hand, (S3, S6) are classified as

Nd2-data because the abstracted DOM hierarchy is equal, making them

structurally similar, while the data changes inside the table make them visually

dissimilar.

3.3.2 Fragment-based Model Inference

FRAGGEN infers the model of a given web app by iteratively triggering user inter-

actions on actionables and recording the corresponding state transitions much like

55

the existing techniques (described in Section 3.2.1).

After an action (α) is performed on a source state, the resulting browser state

is compared to all the existing states in the model using the Classi f y function al-

gorithm 1. If the classification is clone or Nd2-data for any of the existing states,

the new state is discarded, otherwise, it is added to the model.

However, existing techniques assign equal importance to every actionable of

a newly discovered state, often wasting exploration effort exercising similar ac-

tionables. In contrast, FRAGGEN identifies similar actionables through fragment

analysis to diversify the exploration. In this section, we describe how our fragment

analysis is used to 1) diversify state exploration to discover unique states faster,

and 2) identify data-fluid fragments to generate effective test oracles.

Exploration strategy

FRAGGEN ranks the actionables and states using Equation 3.2 and Equation 3.3,

respectively, using the fragment comparisons in Equation 3.1 to determine the

equivalence of actionables. Actionables are special DOM nodes such as buttons

which are used for user interaction.

Where a function X path(α, F) provides a relative XPath expression [164] for α within

F , we decide the equivalence of two actionables αx ∈ Fx, αy ∈ Fy using:

αx ≡ αy⇐⇒ (Classify(Fx, Fy) = Clone ∨ Nd2-data)

∧ (X path(αx, Fx) == X path(αy, Fy)) (3.1)

Given a constant c0 where 0 < c0 <= 1, and αeq is an equivalent actionable determined

using Equation 3.1, the score for an actionable α is computed as:

score(α) =

−1, if α.explored.

0, if ∃ αeq | αeq.explored.

c0 ∗ size({αeq . . .}), otherwise.

(3.2)

The score for a state S is computed using the scores of actionables in the state as:

score(S) =
size({α})

∑
n=1

score(α) (3.3)

56

Using the Equation 3.3, FRAGGEN chooses the next state to explore based on

the total score of the actionables in each state. The score for each actionable (α)

is assigned by Equation 3.2 based on its equivalent actionables (αeq) across states.

Once a state is chosen, again the actionable with a higher score is chosen for explo-

ration, which helps prioritize unexplored actionables that have high repetition such

as navigation links. Equivalence of actionables is established using the fragments

that contain them using the Equation 3.1. Through these equations, every time an

actionable is explored, FRAGGEN de-prioritizes all of its equivalent actionables to

diversify the exploration. As a result of Equation 3.1, this de-prioritization often

reduces redundant exploration effort spent in already seen functionality.

Figure 3.5 shows the model inference performed by FRAGGEN for our running

example. As it can be seen, FRAGGEN can generate a more precise model, exercis-

ing actionables that are considered unique by our fine-grained fragment analysis.

For example, FRAGGEN can identify αNew in S3 to be equivalent to that of S1 and

doesn’t consider it to be unexplored, thus terminating the exploration. On the other

hand, as shown in Figure 3.3, existing techniques exercise αNew on S3 as well, lead-

ing to the creation of S4 and S5 and necessitating further exploration of the same

actionables in the newly added states as well. In fact, without identifying the equiv-

alence of such repeated actionables, state exploration will never terminate even for

this simple example app we present in the chapter. Existing techniques would re-

quire a stopping criterion such as a time limit to end the inference process and will

likely generate an imprecise app model with a high number of near-duplicates.

Configuration options. constant c0 in Equation 3.2: c0 determines the weight

given to the presence of duplicates for an action that is yet to be explored. In

our experiments, we used the default value which is set to 1. We provide the

ability to tune it if necessary for specific web applications. The value of constant

c0 in Equation 3.2 can impact prioritization of states, where, a high value could

delay exploration of a potentially more interesting newly discovered state. This

scenario is possible if the number of duplicates for a single unexplored actionable

outnumber the total actionables in a newly discovered state. In this scenario, the

older states containing this particular unexplored action would get a higher priority

even if a majority of the actions in the state itself are already explored. However,

once any one of the instances of the particular actionable is exercised, the value of

57

Figure 3.5: Model inferred by FRAGGEN

constant c0 becomes irrelevant.

Termination: We designed FRAGGEN to be configured to limit the amount

of duplication in order to avoid generating inflated models. By default, FRAGGEN

does not exercise any actionable which is found to be similar to an already explored

actionable. It will terminate once all unique actionables are exercised. However,

this duplication in exploration effort can sometimes be necessary to fully explore

app functionality. Therefore, we provide configuration to continue exploration us-

ing unexplored actionables that were previously skipped because they were similar

to already explored actionables. FRAGGEN would continue to use Equation 3.2

and Equation 3.3, for prioritization.

Memoization and data-fluid fragments

During the model inference process, recall that after every exploration step,

FRAGGEN decides if the resulting browser state should be retained in the model

by comparing it to the existing states using the Classi f y function. Our exploration

strategy also relies heavily on the Classi f y function to search for diverse actions

as seen in Equation 3.1.

From algorithm 1, it can be seen that Classi f y for a given pair of fragments is

recursive in nature that may require comparing the corresponding child fragments.

To improve its performance, we apply a classic technique for recursive algorithms

called memoization, which aims to avoid recalculation of results for sub-problems.

58

Here, instead of storing just the comparison results for every pair of fragments, we

employ a map-based implementation with unique fragments as map keys and a list

of their duplicates as the values.

Whenever a new state is added to the model, we update the map by comparing

each of the fragments in the new state to existing unique fragments. If any of the

fragments in the new state is not a clone (Cl) of existing unique fragments, it is

added to the map as a new unique fragment. Otherwise, it is added as a duplicate

of the unique fragment it is found to be a clone of.

Further, we utilize this memoization technique using the map of fragments to

identify data-fluid fragments. A fragment is data-fluid if it is found to be an Nd2-

data near-duplicate of at-least one other fragment in the map. Intuitively, we are

trying to recognize the parts of the dynamic DOM, specific to the web app being

tested, that are likely to have data changes. Any clone of a data-fluid fragment is

also data-fluid. For example, in Figure 3.4, F6 in S3 and F6, F7 in S5 are identified

to be data-fluid.

In practice, there could be multiple causes for changing data in fragments;

such as a DOM element that displays current time. Indeed, this ability to mutate

dynamic DOM in real-time is the primary reason that developers are able to create

highly interactive and responsive web apps. However, such changes also pose a

challenge to web testing in the form of fragility of the automatically generated test

oracles which fail in response to every change in the dynamic DOM. In the next

section, we describe how FRAGGEN mitigates this challenge by making use of

memoization and data-fluid fragments to generate robust test oracles.

3.3.3 Test Generation

UI Test cases, such as the one shown in Listing 4.1, are sequences of UI events

derived from inferred web app models as discussed in Section 3.2.1. We designed

FRAGGEN to generate tests using exploration paths which are essentially inferred

model iterations as shown in Figure 3.5, and contain at least one unexplored action

in each new path.

Recall (from Section 3.2.1) that a model iteration starts by reloading the URL

and ends when the browser state does not have any unexplored actions remaining.

59

As the exploration paths or model iterations cover all states and transitions, test

cases generated by FRAGGEN also cover all the states and transitions in the model.

Each exploration path translates to a test case that starts with loading URL,

similar to the test case shown in Listing 4.1. For each transition (A -¿ (Ssrc, α,

Stgt)) in an exploration path (P , definition 15), we generate a test step to perform

the action (α) and generate assertions that compare corresponding recorded model

states with the browser states by using the function Classi f y (algorithm 1).

In the remainder of this section, we describe the challenges in generating ro-

bust test assertions and how FRAGGEN utilizes fragment analysis to tackle this

challenge.

Test assertions

An important but often neglected aspect of regression testing is the creation of ef-

fective test assertions or test oracles, which are key in detecting app regressions.

Existing test generation techniques generate fragile/brittle test assertions [157],

which results in many false positive test failures.

Generating web test assertions is considered difficult [20], primarily because

they require a reliable state comparison to handle near-duplicates. Previously, re-

searchers have relied on manual specification of DOM invariants [97] specific to

a web app. Although effective, such a procedure is not scalable for complex large

applications and requires significant human effort as well as domain knowledge.

Our test assertions use the fragment-based state abstraction to identify changes

between recorded states in the model and the states observed during test execution.

We designed FRAGGEN’s test execution to utilize data-fluid fragments identified

during model inference to assign importance to the changes detected by our state

comparison. As a result, FRAGGEN can produce fine-grained warnings with differ-

ent levels of severity based on the characteristics of detected changes. Test failures

can then be declared based on the severity of warnings, reducing false positive test

failures or test breakages caused by unimportant changes.

60

Step

Type

Test

Step

Execute

Action on

Browser

Get State from

Model (Sm)

Action

Assertion

Get State from

Browser (Sb)

Success?

End Test

no

HTML

ReportClassify

(Sm, Sb)
DistinctClone

Error

data-fluid ?

Nd_2Success

Warn-3

Assertion Result

Get Next
Test Step

Start Test

Nd_3

Warn-2Warn-1

yes no

yes

Figure 3.6: Test execution flowchart. The function Classi f y is defined in al-
gorithm 1

Test execution

Figure 3.6 shows the flowchart of our test execution. For each action step, that

exercises actionable (α) in the transition (A), the test execution continues if suc-

cessful or stops otherwise. For each assertion step, we invoke our fragment-based

comparison (Classi f y in algorithm 1) between the browser state (Sb) and the model

state (Sm) specified for the particular test step. Based on the output of Classi f y and

using memoization, FRAGGEN can create three levels of warnings in addition to

success and error for each assertion. Warn-3 has the highest severity while Warn-1

is the lowest. To the best of our knowledge no prior technique exists to generate

such warnings for UI test cases. Existing techniques are only capable of creating

a binary decision for a given test oracle and generate either an error or a success

status.

61

Using data-fluid fragments. We lower the severity of a warning from Warn-2

to Warn-1 when we detect that the changes observed belong to a fragment that is

data-fluid. For example, a web element displaying current time on a web page

changes in every concrete instance of the web page and should be given a lower

severity warning compared to a change to the title of a web page, which has never

been found to change during model inference. It is important to recognize that both

these changes would just be textual changes in the DOM for any state comparison

technique.

Configuration. In our experiments, we consider any warning other than Warn-

1 to be an assertion failure. However, we provide the capability to configure the

assertion failures based on warning levels. Our empirical evaluation assesses how

the usage of memoization and identification of data-fluid fragments can help make

our assertions robust to near-duplicates while retaining the ability to detect bugs.

Report. FRAGGEN also generates an HTML test report that shows the test exe-

cution results for easier manual analysis. The report provides a visualization of

changes and their severity. Our replication package contains a test report for every

test execution in the evaluation.

3.3.4 Implementation

For page fragmentation, existing implementations of VIPS rely on web rendering

frameworks that are no longer maintained and render modern pages incorrectly.

Therefore, we ported one implementation [118] to WebDriver API in Java, which

is also used by CRAWLJAX so that pages rendered on modern browsers can be

fragmented.

We use our ported version of the VIPS [26] algorithm for decomposing a web

page into fragments, and compare the structural and visual aspects of the fragments

using APTED [113] and Histogram [150] respectively.

We modified the latest version of CRAWLJAX [96] to employ our state ab-

straction for state equivalence and use our exploration strategy. Finally, our test

generator is implemented as a CRAWLJAX plugin and generates JUnit test cases

using the WebDriver API. Our tool, FRAGGEN, is publicly available [169].

62

3.4 Evaluation
Our empirical evaluation aims to assess FRAGGEN through (1) its ability to de-

tect near-duplicates, (2) the adequacy of its inferred web app models, and (3) the

suitability of its generated tests for regression testing. We do so by answering the

following research questions.

RQ1: How effective is FRAGGEN in distinguishing near-duplicates from distinct

states compared to current whole-page techniques?

RQ2: How do the models generated by FRAGGEN compare to the models gener-

ated by current techniques?

RQ3: Are the tests generated by FRAGGEN suitable for regression testing?

• RQ3a: How do the generated test cases perform in regression testing sce-

narios?

• RQ3b: How effective and tolerant are the generated test oracles?

In RQ1, we assess the effectiveness of competing techniques in detecting near-

duplicates through state-pair classification. In RQ2, we measure the model quality

which directly influences the completeness and redundancies in the generated tests.

In RQ3, we assess the suitability of generated test suites in regression test scenar-

ios by measuring their reliability in addition to the effectiveness in detecting app

changes. For RQ3a, we execute the generated tests on the same web app version

but different platform/browser versions to analyze their usability in regression test

scenarios, and then evaluate their effectiveness in detecting app changes for a dif-

ferent version of the web app. Finally, for RQ3b, we perform mutation analysis

of recorded web states to assess the effectiveness and robustness of generated test

oracles.

3.4.1 Subject Systems

To address our research questions, we needed to manually analyze captured ap-

plication states which requires a certain level of control over app behaviour and

ability to replicate app states under similar experimental conditions.

63

Table 3.2: Experimental subjects

App v0 v1 Framework LOC

addressbook [116] 8.2.5 8.2.5.1 PHP, JavaScript 32K
petclinic [13] 6010d5 4aa89ae Java, Spring MVC 6K
ppma [14] 0.6.0 0.5.2 Yii, JavaScript 556K
dimeshift [46] 261166d 44089e Backbone.js, JQuery 10K
claroline [34] 1.11.10 1.11.9 PHP, JavaScript 340K
phoenix-trello [115] 60c874d c1cdf30 Phoenix, Elixir, ReactJS 5K
pagekit [110] 1.0.16 1.0.14 Symfony, Vue.js 275K
mantisbt [15] 1.1.8 1.2.1 PHP, JavaScript 120K

In addition, for RQ1 and RQ2, we require a manually labelled ground-truth for

state-pair classification and unique states in a web app respectively.

To this end, we selected eight open-source web apps with an available ground-

truth [147] and used in prior web testing research [22, 23, 144, 145, 173].

Our eight subjects shown in Table 5.1 cover a diverse set of several popular

back-end and front-end web app frameworks such as Symfony, Yii, Spring MVC,

Backbone.js, Vue.js, Phoenix/React, JQuery, Bootstrap and AngularJS. Some of

our subjects such as MantisBT, Claroline, PageKit are quite complex and im-

mensely popular with a sizeable active user base. For example, Claroline is an

award winning learning management system (LMS) used in more than 100 coun-

tries and is available in 35 languages; MantisBT is one of the most popular open

source issue tracking systems in active use.

3.4.2 Competing techniques

Based on the results of our recent empirical study [173], we choose two of the best

whole-page techniques, (1) RTED [112], a DOM tree differencing technique which

inferred the best models on an average, and, (2) Histogram [150], which was the

best performing visual algorithm outperforming RTED on several subjects. From

here on, we refer to RTED as Structural and Histogram as Visual when presenting

our evaluation.

64

Table 3.3: Manually classified state-pair dataset

Pa
ir

s

C
lo

ne
s Near-Duplicates

D
is

tin
ct

Subject Nd2 Nd3 Total

addressbook 8515 26 52 2295 2347 6142
petclinic 11175 2 1433 180 1613 9411
claroline 17766 2707 69 2 71 14988
dimeshift 11628 375 570 0 570 10683
pagekit 9730 0 904 3044 3948 5782
phoenix 11175 1 25 4580 4605 6569
ppma 4851 64 467 0 467 4320
mantisbt 11325 2 1117 0 1117 10206

Total 86165 3177 4637 10101 14738 68101

3.5 State-pair Classification (RQ1)
To address RQ1, we compare FRAGGEN to whole-page techniques (Section 3.4.2)

in terms of their ability to classify a given state-pair as either clone, near-duplicate,

or distinct.

3.5.1 Procedure and Metrics

Dataset. We use an existing dataset (Table 3.3) of 86,165 state-pairs that are

manually labeled as either clone (Cl), Nd2-data, Nd3-struct, or distinct (Di) as

ground truth. It contains 4,637 Nd2-data and 10,101 Nd3-struct near-duplicates

along with 3,177 clones and 68,101 distinct state-pairs belonging to eight subjects

used in this work. For the two competing whole-page techniques, structural and

visual, the dataset also includes the computed distance between the two states for

each of the 86,165 state-pairs.

Comparison metrics. We use two metrics to compare the competing techniques,

1) the classification F1 score and 2) the number of detected near-duplicates. We

designed our experiment so that, given a state-pair, each technique classifies it to

be either clone (Cl), near-duplicate (Nd) or distinct (Di). Using the manually clas-

sified ground-truth, we then compute the multi-class classification F1 score which

65

is the average of F1 over all three classes (Cl,Nd,Di).

Whole-page technique configuration. The whole-page techniques by default
only output a distance between the two states of a given state-pair. In order to com-
pute the output class for such techniques, we follow previous work [173] which
defined a function Γ as :

Γ(S1,S2,W , tc, tn)

Cl : W (S1,S2)< tc

D : W (S1,S2)> tn

Nd : otherwise

Γ takes as inputs a whole-page comparison technique W which computes the dis-

tance between two given states in a state-pair (S1,S2) and outputs a class using

a pair of thresholds tc, tn. Γ classifies a state-pair to be a clone if the computed

distance falls below the threshold tc, distinct if it is above tn or near-duplicate oth-

erwise. Therefore, the choice of thresholds tc, tn, can play a huge role in the overall

effectiveness of the techniques.

Threshold determination for whole-page techniques. To obtain optimal thresh-

olds that maximize the classification scores of the two whole-page techniques, us-

ing the labelled dataset (shown in Table 3.3) as ground-truth, we employ bayesian

optimization [136] to search for thresholds that maximize the multi-class classifica-

tion F1 score for Γ. We ran the optimization technique for 10,000 iterations or trials

and retrieved the thresholds that provided best F1 score to be optimal thresholds.

In each trial, the optimizer chooses a pair of thresholds from the sample space of

distances possible for the corresponding whole-page technique and computes the

F1 score.

FRAGGEN configuration. For each state-pair in the dataset, we invoke the

Classi f y function (algorithm 1) which outputs one of the four classes (Di, Cl,

Nd2-data, Nd3-struct). For this experiment, we combine the two outputs Nd2-data

and Nd3-struct into a single class Nd to compare with the output of Γ.

66

2000 4000 6000 8000 10000

Trials

0.0

0.2

0.4

0.6

0.8

1.0

C
la

s
s
if
ic

a
ti

o
n
 F

1

F1=0.767

F1=0.535

F1 = 0.836

Structural Visual FragGen

(a) Finding optimal thresholds using classification F1

#
 s

ta
te

-p
a
ir
s

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

TotalFragGenVisualStructural

Clone Nd2-data Nd3-struct Distinct

(b) Correctly classified state-pairs for optimal thresholds

Figure 3.7: State-pair classification results on the dataset

67

Table 3.4: F1 of inferred models for 60 minute crawls

addressbook claroline dimeshift mantisbt pagekit petclinic phoenix ppma Average

Structural 0.44 0.83 0.26 0.42 0.40 0.79 0.38 0.23 0.47
Visual 0.42 0.71 0.50 0.28 0.47 0.93 0.19 0.21 0.46
FRAGGEN 0.89 0.82 0.74 0.90 0.74 1.00 0.59 0.71 0.80

0 25 50 75 100 125 150

States

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F

Structural

0 25 50 75 100 125 150

States

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F

Visual

0 20 40 60 80 100

States

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

F

FragGen

Figure 3.8: F1 as states are detected and added to the model.

68

3.5.2 Results

Figure 3.7a shows the classification F1 being optimized for the structural and visual

whole-page techniques by a bayesian optimizer in 10,000 trials. To make the data

comprehensible, we divided the 10,000 trials into 100 intervals and plotted a single

data-point per interval in Figure 3.7a. We chose the maximum F1 found in the

corresponding interval of 100 trials as the representative data point of the interval.

As seen in the Figure 3.7a, FRAGGEN with an F1 score of 0.836 performs

better than the two whole-page techniques. FRAGGEN’s F1 score is 55% better

than structural technique and 9% better than visual technique, which have scores

of 0.535 and 0.767 respectively.

Figure 3.7b shows the correctly classified state-pairs for each of the four state-

pair classes in the dataset for the optimal thresholds. FRAGGEN correctly clas-

sifies the highest number of Nd3-struct as well as distinct (Di) state-pairs, while

the visual technique is the best at classifying clones (Cl) and Nd2-data state-pairs.

Structural is the worst performer overall with a slightly better Nd3-struct detec-

tion compared to visual. Overall, FRAGGEN correctly classifies 77,261 state-pairs

while the visual and structural techniques correctly classify 73,920 and 64,872

state-pairs respectively.

Out of the 14,738 near-duplicates in the dataset, FRAGGEN detects 7,913

which is 188% and 82% better than the structural and visual techniques that detect

2,746 and 4,333 near-duplicates respectively. The result is significant because the

whole-page techniques performed worse despite having an obvious advantage of

classifying the same dataset that is being used for optimization. As the previous

study [173] shows, given a set of state-pairs from an unseen web app, the

whole-page techniques are unlikely to perform at a similar level using the same

thresholds.

Indeed, the study delves deeper into the threshold selection for generating op-

timal models; it concludes that 1) the thresholds should be chosen specific to each

web app and 2) a ground-truth should be created for any new web app in order to

obtain optimal thresholds. Even after such an optimization per web app, as we il-

lustrate with an example in Section 3.2.2, reliance on thresholds creates an inherent

limitation for whole-page techniques in separating the Nd3-struct near-duplicates

69

Table 3.5: Comparison of inferred models (eight subjects)

SAF
Model Quality Labelled Web States

Te
rm

in
at

io
n

Pr Re F1 Unique Near-Duplicates

Nd2 Nd3 All

Structural 0.46 0.51 0.47 249 44 282 326 2
Visual 0.45 0.52 0.46 244 325 116 441 1
FRAGGEN 0.79 0.83 0.80 411 90 29 119 4

from distinct state-pairs.

In RQ2, we investigate the quality of models inferred by each of the compet-

ing techniques configured with the optimal thresholds. We obtained optimized

thresholds that generate the best model for each of the subjects from the empirical

study [173].

3.6 Model Inference Comparison (RQ2)

3.6.1 Procedure and Metrics

Model quality. We measure the quality of an inferred model in terms of its cover-

age of the app state-space, recall (Re), and amount of duplication, precision (Pr),

by manually analyzing it with reference to a ground truth model for the web app

using a methodology established in prior research [173]. The ground truth models

for our subject apps taken from a published dataset [147] represent the functional-

ity of a given web app using a minimal set of states and transitions. A ground truth

model is a set of unique states. To analyze a given inferred model, each state in the

inferred model is manually mapped to one of the ground truth states. A state (Sm)

in the inferred model is mapped to a state (Sg) in the ground truth if the manual

classification of the state-pair (Sm, Sg) is either clone, Nd2-data or Nd3-struct. Ev-

ery ground truth state that is mapped to at-least one state in the inferred model is

covered by the inferred model. We then compute Pr of the inferred model as the

ratio of covered ground truth states to the total states in the inferred model, and Re

as the ratio of covered ground truth states to the total number of ground truth states.

70

Experiment set-up. For each of our subject apps, we generate models using each

technique by setting a maximum exploration time of 1 hour to be the stopping cri-

teria. We use Google Chrome (v82.0) browser, and reset the subject app after every

crawl to remove any back-end changes done by previous run. For a fair compar-

ison, we configure each technique to use exactly the same crawl rules (e.g., form

fill data). A technique can also terminate exploration before the stopping crite-

rion is invoked by the crawler. Table 3.5 shows the number of times a technique

terminated on its own.

3.6.2 Results

Table 3.5 shows the overall statistics for all the eight subject apps for FRAGGEN

compared to structural and visual techniques. For recall, on average, FRAGGEN

covered 83% of the state space, which is 60% higher than visual, the next best

technique. For precision, at 79%, FRAGGEN produced models with 71% higher

precision than structural, which itself performed slightly better than visual. In total,

FRAGGEN added only 119 near-duplicates in all models, compared to the 326 by

structural and 441 by visual, which are nearly 3 and 4 times higher, respectively.

FRAGGEN also discovered 411 unique states overall, while the existing whole-page

techniques detected 37% less app states in aggregate terms.

Overall, the F1 measure of FRAGGEN is 0.80, while that of structural and

visual whole-page techniques are 0.47 and 0.46, respectively. Table 3.4 shows the

details for all the subject systems. FRAGGEN consistently produced models with

better F1 except for Claroline where structural technique’s model is marginally

better.

When F1 of the models is plotted against the states being added to the model,

as shown in Figure 3.8, it can be seen that the F1 score for existing techniques

does not improve after an initial exploration period. As a result, the final models

generated by existing techniques can sometimes deteriorate over time as more and

more near-duplicates are added. FRAGGEN, however, keeps improving the model

quality when given more time as it diversifies the exploration to discover unseen

states while avoiding the addition of near-duplicates to the model.

One of the main reasons for this trend is that existing techniques exercise simi-

71

Figure 3.9: Detected near-duplicates in phoenix

lar actions repeatedly, and in dynamic web apps, this often results in the creation of

near-duplicates and infinite loops, as mentioned in Section 3.2.2. Consider a real

example from our subject Phoenix, where the action “create board” is available in

two model states as shown in Figure 3.9. In both states, the action is functionally

similar as it creates another board and therefore, need not be exercised more than

once. However, existing techniques, which rely on whole-page comparison, can-

not infer such similarities and keep creating boards and Nd3-struct near-duplicate

states as they repeatedly exercise the “create board” action.

On the other hand, FRAGGEN is able to identify similar actionables through

fine-grained fragment-based analysis to avoid creating Nd3-struct states and suc-

cessfully diversify the exploration. Indeed, as the Table 3.5 shows, FRAGGEN

added just 29 Nd3-struct states overall while structural and visual techniques added

282 and 116 respectively.

The trend is prominently noticeable in Figure 3.8, where FRAGGEN is able to

improve the model continuously by avoiding addition of Nd3-struct near-duplicates

to the model and seeking out unique actionables to exercise. As a result, FRAGGEN

also terminates exploration for 4 out of 8 subjects apps as shown in Table 3.5,

whereas structural and visual techniques terminate only 2 and 1 times respectively.

72

3.7 Regression Testing Suitability (RQ3)
As part of assessing the suitability of generated tests in regression scenarios, in

RQ3a, we execute generated tests on different browser/platform and app versions,

in order to evaluate the model inaccuracies and fragility of test cases in addition

to the effectiveness of techniques in detecting application changes. In RQ3b, we

further evaluate the robustness and effectiveness of test oracles by simulating evo-

lution through mutation of recorded web states.

3.7.1 Test Breakages (RQ3a)

Procedure and Metrics

The goal of our evaluation in RQ3a is to assess how FRAGGEN compares against

existing techniques that generate regression tests automatically. There are not many

techniques available that generate regression tests for web applications currently.

We compare tests generated by FRAGGEN against tests generated by CRAWLJAX,

which also employs exploration paths to generate tests from the crawl model.

While FRAGGEN uses its fine-grained fragment analysis to generate test ora-

cles, for the whole-page techniques, CRAWLJAX is configured to generate test ora-

cles that use the same whole-page comparison as the one used for model inference,

namely, structural (RTED) and visual (Histogram).

Table 3.7 shows the three regression test scenarios used in our evaluation,

where in ε1 and ε2, we execute tests on the same app version but vary browser/-

platforms from the crawl, allowing us to evaluate the validity and robustness of the

generated test suite. We then execute tests (ε3) on a different version of the web

app to determine the effectiveness of the test suites in detecting real application

changes.

73

Table 3.6: Regression test run results

Whole-page techniques
FRAGGEN

Visual Structural Average

Test Execution ε1 ε2 ε3 All ε1 ε2 ε3 All v0 v1 All ε1 ε2 ε3 All

Action Success % 83.6 83.2 63.0 76.6 89.1 88.8 69.0 82.3 86.2 66.0 79.5 99.5 99.9 93.3 97.6

Oracle Success % 0.0 0.0 0.0 0.0 53.1 51.3 22.8 42.4 26.1 11.4 21.0 98.6 97.5 64.8 87.0

74

Table 3.7: Regression test execution set-up

Execution app version Platform Browser

Crawl v0 MacOS-14 [82] chrome-82
TestSuite ε1 v0 MacOS-14 chrome-83
TestSuite ε2 v0 RHEL-7 [125] chrome-84
TestSuite ε3 v1 RHEL-7 chrome-84

Figure 3.10: Test breakages on the same app version (ε1,ε2)

RQ3a Results

As seen in Table 3.6, whole-page techniques generated test actions that succeeded

only 86.2% on an average. A potential cause for failure of remaining nearly 14%

actions on the same version could be limitations in handling the near-duplicates for

existing techniques. As Figure 3.10 show, breakage of these test actions resulted

in breakage of 16% and 10% of tests in visual and structural test suites respectively

without even considering the test oracle fragility. When test oracles are considered

in declaring test breakages, all visual test oracles fail during test executions causing

100% test breakage, while 52% structural oracles fail breaking nearly 74% of tests

in the same app version.

In contrast, FRAGGEN can execute test actions on the same version of the web

app with nearly 100% success rate. As Table 3.6 shows, in ε1,ε2, FRAGGEN’s test

oracles also have a 98% success rate on average, showing greater adaptability to

changing execution environments compared to the whole-page techniques.

Next, we evaluate test suite effectiveness in detecting app changes on a different

version of web app using the test execution (ε3). We follow the standard web

testing practice where tests created for an existing version (v0) are executed on a

75

Visual

Structural

FragGen

0% 25% 50% 75%

App Change Invalid Test

(a) Test action failures (ε3)

Visual

Structural

FragGen

0 25 50 75 100

App Changes Invalid Comparision Fragile Oracle

(b) Random test oracle failures (ε3)

Figure 3.11: Manual analysis of failed test actions and oracles on a different
version of the web apps

new version (v1) of web app in order to detect faults through manual analysis of

test failures. We mitigate the potential bias in manual analysis of test failures by

labelling all observed application changes to be faults.

When we manually analyzed all test failures in ε3 as shown in Figure 3.11a,

we found that both structural and visual test suites detected 4 app changes each

and produced 172 and 344 false positives respectively. In contrast, FRAGGEN was

able to detect 7 app changes with only 10 false positives, significantly reducing the

manual effort required to identify app changes and maintain test suites.

We then manually analyzed 100 randomly selected oracle failures for each

technique to label the cause of failure. In this manual analysis, if the test state

matches the expected state, we categorize the failure as either an app change if we

notice a change in application behaviour or a fragile oracle as the failure represents

a limitation of state comparison. Our analysis depicted in Figure 3.11b, shows that

71 visual and 37 structural oracles failed because of fragility in state comparison,

whereas FRAGGEN generated only 3 fragile test oracles. Of the 100 examined

failures, while the structural and visual oracles only detected 2 and 1 app changes

respectively, FRAGGEN could detect 37 app changes.

76

When the test state and expected state do not match for the failure being an-

alyzed, we categorize it as an invalid comparison, where typically test execution

does not reach the target app state due to failure of earlier test actions or invalid

test sequences due to changed app behaviour. Further root cause analysis of such

failures is difficult even with domain knowledge, which makes it challenging to

directly evaluate test oracle robustness through regression test executions. We mit-

igate this problem in RQ3b, where the test oracles are compared on a synthetic

dataset generated through mutation of recorded web pages.

These results show that the tests generated by FRAGGEN are significantly more

robust than existing techniques in regression testing scenarios involving the same

version of the web app, and show greater efficacy in detecting evolutionary app

changes with significantly lower manual effort.

77

Table 3.8: Mutation operators for DOM nodes

Type Tags or Attributes Description Example (original : mutant)

Attribute {id, class, title} Modifies mentioned attribute value of any node. [<div id=”a”>] : [<div id=”aMut”>]

Tag {span, h1-h6, p} The tag name is changed to a similar tag. [<h1>xyz</h1>] : [<h2>xyz</h2>]

Subtree {div, table, tr, td, ul, li, p} Deletes all children of selected container node. [<tr><td>xyz</td></tr>] : [<tr></tr>]

Text {h1-h6, p, b, i, } The text content of selected leaf node is changed. [<h1>abc</h1>] : [<h1>abcMut<h1>]

78

3.7.2 Effectiveness and Robustness of Test Oracles (RQ3b)

In RQ3b, we simulate evolutionary app changes using mutation analysis to evaluate

the suitability of generated test oracles for regression testing.

Mutation Analysis Methodology

We define four mutation operators for DOM nodes as shown in Table 3.8 in order

to generate mutant web pages. Similar mutation operators for GUI artifacts have

been proposed in prior web [100, 104, 120], Android [77] and GUI [7, 107] muta-

tion analysis research. Since RQ3b only aims to evaluate test oracles, we find this

approach of mutating recorded web pages to be adequate and more flexible, instead

of mutating the actual web app source code as prior work does.

Given a crawl model and a test execution trace, our mutation analysis tool ap-

plies a random mutation to one of the model states and compares the mutant to the

corresponding states in the test trace using each of the three competing techniques.

We partition the generated mutants into either app changes or irrelevant to func-

tionality based on their visibility in the GUI. We categorize (1) the mutants not vis-

ible on the page as equivalent mutants that test oracles should tolerate and ignore,

and (2) all visible mutations as app changes that should be detected by effective

test oracles. As Table 3.9 shows, we use 3,042 Visible mutations to compute effec-

tiveness. Robustness is computed using 6,013 equivalent mutants that are of three

kinds : None - where no mutation has been applied on the state; AttributeMutator

- an attribute is mutated; and, Invisible - where a hidden web element is mutated.

Note that we recognize the possibility of invisible DOM or attribute changes

affecting web page functionality. However, we expect that such changes manifest

in failure of test actions, which is outside the scope of RQ3b, as our set-up does not

execute test actions on these mutated states.

Equivalent mutants of the kind None may still have DOM changes that result

from a variety of reasons such as autogeneration of pages in back-end. We still con-

sider them to be equivalent because the changes do not relate to either 1) change in

source code which was unmodified or 2) change in test execution which remained

consistent.

Finally, we consider a test oracle to be suitable for regression testing if it has

79

Table 3.9: Effectiveness and Robustness of test oracles

Score Mutation

St
ru

ct
ur

al

V
is

ua
l

FRAGGEN

Ty
pe

N
o-

M
em

W
ith

-M
em

Visible 3042 2235 2908 3001 3001

Effectiveness 73.5 95.6 98.7 98.7

None 4620 198 1964 921 136
Attribute 770 10 585 166 157
Invisible 623 553 577 275 274

Total 6013 761 3126 1362 567

Robustness 87.3 48.0 77.3 90.6

high robustness as well as effectiveness.

FRAGGEN configuration. As described in Section 3.3.2, during model inference,

FRAGGEN identifies data-fluid fragments and employs this knowledge to generate

test oracles. In Table 3.9, No-Mem refers to test oracles if only fragment-based

comparison is used; and With-Mem shows the test oracles that employ knowledge

of data-fluid fragments.

As shown in Figure 3.6, without the knowledge of data-fluid fragments, we

cannot lower the severity of warnings for changes that are typical for the web app

under test and therefore may not necessarily be application bugs.

Results

As Table 3.9 shows, our mutation analysis experiment resulted in a total of 3,042

randomly generated visible mutations that should be detected by the oracles and

6,013 equivalent mutants that the oracles should be tolerant to.

Overall, amongst the existing techniques, visual test oracles detect 95.6% of

visible mutations while RTED, the structural comparison technique which only

considers HTML tags for equivalence, is tolerant to 87.3% of equivalent mutants

encountered during the experiment. However, visual oracles are fragile, with a

80

Effectiveness

R
o
b
u
s
tn
e
s
s

40

60

80

100

70 80 90 100

Figure 3.12: Effectiveness vs Robustness of test oracles

robustness score of only 48%, whereas structural oracles fail to detect 26.5% of

the visible mutants.

In contrast, test oracles generated by FRAGGEN are able to detect 98.7% of

visible mutants in both the configurations. When memoization knowledge is ap-

plied in the With-Mem configuration, FRAGGEN has the highest robustness of all

the competing techniques by detecting 90.6% of the equivalent mutants. In the

No-Mem configuration, when only fragment-based state comparison is used, the

robustness drops to 77.3%, which is still 61% more than visual. The difference in

numbers between the two configurations is because of handling the None category,

where no mutation has been applied to the recorded web pages. It can be concluded

therefore, that FRAGGEN is able to make use of memoization and data-fluid frag-

ments to improve the robustness of test oracles.

As the Figure 3.12 shows, existing whole-page oracles can either be highly

effective or highly tolerant but cannot balance both the aspects, causing either a

large number of false positives or false negatives respectively. FRAGGEN’s test

oracles on the other hand, use fine-grained fragment analysis with memoization

to outperform existing techniques in both effectiveness and robustness at the same

time, making them suitable for regression testing of modern web apps.

3.8 Discussion

Granularity of fragments. During our experiments, we found that determining

equivalency of certain fragments that are too small such as F3, shown in dotted

81

lines in Figure 3.4, using DOM or visual characteristics results in drawing false

equivalence between semantically different web pages. In order to avoid this, using

a predefined threshold, FRAGGEN prunes out the smaller fragments and does not

use their equivalence in determining page similarity.

One such example is shown in Figure 3.13, where each individual tag can have

two states – selected or not. Therefore each tag can be semantically equivalent

to other depending on this state. However, as we avoid comparing the smaller

fragments of individual tags, we cannot determine equivalency of parent fragments

which differ structurally upon selection of different tags. The number of possible

near-duplicates we cannot detect in such cases can explode in number, and is the

reason for the reduced precision of the web app model for phoenix.

Even-though smaller fragments with even one web element can be separate

functional entities, such fine-grained comparison needs semantic inference beyond

simple DOM and visual characteristics, which we leave for future work.

Test oracle generation. FRAGGEN currently identifies data-fluid fragments as-

suming that during model inference, only the events fired by the crawler can cause

persistent changes. Such assumption can fail on live web applications where multi-

ple users can concurrently induce back-end changes. However, since our technique

is meant for test environments, we consider our assumption reasonable.

Model Inference in other domains. While our FRAGGEN implementation is spe-

cific to web apps, conceptually our approach to model generation based on frag-

ments (instead of whole pages or whole screens) can be applied to other domains

such as mobile apps or desktop applications.

Threats to validity. Using a limited number of web apps in a controlled setting in

our evaluation poses an external validity threat and further experiments are needed

to fully assess the generalizability of our results; we have chosen eight subject apps

used in previous web testing research, pertaining to different domains in order to

mitigate the threat. Threats to internal validity come from the manual labelling

of web pages and changes, which was unavoidable because no automated method

could provide us with the required ground truth. To mitigate this threat, we per-

formed the labelling by following a process established in prior work. For repro-

ducibility of our findings, we made our tool publicly available [169] along with

82

DOM DOM

Figure 3.13: Undetected near-duplicate fragments in phoenix

usage instructions and used subject systems.

3.9 Related Work
In web model inference, CRAWLJAX [96] explores dynamic web apps with client-

side JavaScript by triggering actions and analyzing the DOM. WebMate [38] crawls

web apps using a state equivalence based on actionables in web pages. FRAGGEN

is built upon CRAWLJAX framework by adding a new fragment-based state abstrac-

tion and modifying several core components that drive state exploration.

For regression test suite generation from web app models, Mesbah et al. pro-

posed test generation based on model coverage [96] while Marchetto et al. [89]

used coverage criteria based on semantically interacting events. FRAGGEN uses

the exploration paths that cover all the events and states in the inferred model for

test generation.

Instead of crawl models, Biagiola et al. use page objects derived from crawl

models, and employed search-based [21] techniques, diversification [23] of test

events to generate test cases. These page objects used in existing work are de-

83

rived from crawl models generated by the baseline Crawjax that was manually

configured with thresholds by the researchers for their experiments. In contrast,

we generate test cases directly from crawl models without any manual threshold

selection using the paths followed by our exploration strategy during model in-

ference. Although the generation of page objects from crawl models is largely

automated, some manual effort such as specifying guards to avoid test dependen-

cies is required for optimal results. Indeed, the superior crawl models generated

by FRAGGEN should improve the test cases generated by the existing techniques

based on page objects.

Prior research used histogram [32] to detect cross browser differences and man-

ually specified DOM invariants [95] to create robust test oracles. FRAGGEN, how-

ever, automatically generates robust fine-grained test oracles at fragment level by

leveraging model inference.

To assess the quality of web test suites, prior work mutated source code artifacts

such as JSP web pages [120, 121], and client-side JavaScript [100, 104]. We assess

the quality of test oracles by mutating the recorded web pages.

Sun et al. [149] employed page fragment-based exploration for efficient infor-

mation retrieval while we use fragmentation for model inference and test oracle

generation.

FeedEx [98] employs a combination of client-side JavaScript code coverage,

DOM and Path diversity to prioritize re-exploration of already explored actions.

WebExplor [181] by Zheng et al. also proposes a method to prioritize web elements

that were already explored by rewarding discovery of new states in previous result

of the same action. Both these existing techniques assign the same priority to

all unexplored actions. State exploration strategy is a concern for UI testing in

general and Degott et al. [40] also prioritize exploratory actions by first exploring

all available actions in a mobile app and analyzing the results of execution. In

contrast, FragGen is able to make use of fragment based equivalence of unexplored

actions to diversify exploration.

Bajammal et al. [19] look at the testing of canvas elements which can have

visual changes but no DOM changes. In contrast, FRAGGEN would consider such

changes to be non-functional in nature.

To the best of our knowledge, we are the first to employ page fragmentation to

84

establish state equivalence for web app testing. Our novel state comparison com-

bines both structural and visual analysis of the identified fragments to effectively

detect near-duplicates. Our tool, FRAGGEN, uses this novel state comparison to in-

fer precise models, as well as generate effective and reliable regression test suites.

3.10 Conclusions and Future Work
Automated model inference and test generation for complex dynamic modern web

apps is a challenging problem because of the presence of near-duplicates that can-

not be detected by whole-page analysis employed by existing techniques. We de-

veloped a novel technique, FRAGGEN, which uses smaller page fragments to de-

tect near-duplicates and diversify web app exploration to generate precise models

while covering a high percentage of application state space. FRAGGEN is also

able to generate oracles that are suitable for regression testing as they are highly

effective in detecting visible app changes while being tolerant to minor changes

unrelated to functionality.

As part of the future work, we plan to improve our state comparison technique

through inference of web page semantics when structural and visual characteristics

are inadequate.

85

Chapter 4

Mutation Analysis for Assessing
End-to-End
Web Tests

4.1 Introduction
Modern web apps are highly dynamic in nature and contain a heterogeneous col-

lection of server-side and client-side components that interact in real-time to up-

date the web page in response to user requests. Consequently, testing web apps

programmatically is challenging and is often performed in an end-to-end (E2E)

fashion by exercising the GUI functionality of web apps. Given the short release

cycles of web apps, automated regression testing using UI tests plays a significant

role in the validation of web app changes.

Because of their importance, companies currently invest manpower in creat-

ing and maintaining such UI tests suites. However, despite this reliance on UI test

suites to validate web app functionality, currently, there is no universal tool to deter-

mine their fault-finding capabilities. Therefore, in practice, UI test suite adequacy

is determined by coverage of common use case scenarios, and certain server-side

and client-side code. However, such coverage metrics are generally considered to

be limited for assessing test effectiveness [65, 180].

86

Instead, mutation analysis, which mimics programmer errors by making small

changes to the application has become an accepted norm in establishing the fault

revealing capabilities of test suites. Existing mutation analysis tools for web apps

are not universally applicable as they are designed for specific programming lan-

guages or web development frameworks. Therefore, currently, there exists no mu-

tation analysis framework to assess the actual effectiveness of web-based UI test

suites.

In this chapter, we propose MAEWU, a Mutation analysis framework for End-

to-end web UI test suites. MAEWU mutates the dynamic DOM of the web app

in the browser in order to bypass the limitations of a source code-based mutation

analysis employed by existing techniques. Consequently, MAEWU only requires

the URL of the web app and its test suite to perform mutation analysis; it nei-

ther requires access to the source code of the web app nor employs any proxy to

instrument the client-side code.

Using the dynamic DOM state as an artifact for mutation is conceptually novel

because we mutate the output instead of the actual source code written by program-

mers. While DOM mutation allows for universal applicability in all web apps, it

also poses a unique challenge vis-a-vis its availability during test execution. First,

in traditional mutation analysis, a mutation applied to a source code artifact is pre-

served over multiple invocations during test execution. The same does not apply

for a mutated DOM in a browser which can disappear upon navigation or a page

reload. In addition, as web pages are dynamically generated, applying a muta-

tion consistently to each appearance of the browser state is challenging as a state

equivalence between concrete instances needs to be established. Second, a typi-

cal modern web page is essentially a set of individual UI components, where each

component can appear in multiple different pages. As a result, mutating a web ele-

ment such as a navigation link necessitates identifying all its instances across web

pages. We make use of an automatic page fragmentation technique and a tree com-

parison technique in order to accomplish this task. A similar challenge exists for

other kinds of GUI testing such as desktop applications [107] or Mobile apps [41].

However, researchers in those areas are able to rely on mutating the source arti-

facts because of uniformity in technologies used to generate the corresponding UI.

For example, Android apps use Java for handling UI interactions and layout files

87

to define UI structures, which can be mutated to cover various classes of bugs. In

web testing, however, such homogeneity of languages exists (e.g., a web app could

be built using a combination of JavaScript, HTML, CSS, and PHP).

One of the foremost requirements for an effective mutation analysis tool is the

set of mutation operators designed to generate artifact-specific transformations that

can mimic programmer errors. While existing techniques [120, 135] have proposed

several DOM specific mutation operators, they predominantly rely on mutating the

source code artifacts of programming languages like Java or JavaScript. Existing

DOM operators also do not cover the wide range of possible DOM transformations

that may mimic application faults. As a matter of fact, to the best of our knowledge,

there exists no prior research to establish the relationship between UI or DOM

changes in the browser and application faults for web apps. Existing work [60] on

categorization of web app faults is limited to the location (e.g., server, client) of

the bug. Therefore, in this work, we manually analyze 250 bug reports from open

source web app bug repositories to identify the UI manifestations of real faults, and

design 16 mutation operators (MOs), which manipulate the interactive behaviour

and appearance of web elements to mimic real faults.

We evaluate MAEWU on six open source web apps. Our results show that

MAEWU (1) generates non-equivalent mutants, (2) consistently applies the mutants

dynamically across test executions. The report generated show the mutation score

of a given UI Test suite along with the failed mutants to help improve the test suite.

We summarize the contributions of our work as follows:

• We define a set of mutation operators for dynamic mutation of web pages in

the browser and remove the need for modifying the source code to evaluate

the efficacy of end-to-end test suites.

• We developed a mutation analysis framework, called MAEWU, that is uni-

versally applicable to end-to-end test suites of all web applications regardless

of the back-end and front-end programming languages used for app devel-

opment. MAEWU [170] is publicly available.

• We also provide a dataset of 250 labelled bug reports from open source web

apps, and 300 labelled mutants that can be used by future researchers to

determine the efficacy of UI test suites and mutation analysis techniques.

88

4.2 Background
In this section, we provide a brief overview of the current state of practice in web

testing. Selenium Web Driver is one of the most popular tools for automated UI

testing. It provides API in most popular programming languages such as Java and

Python to remotely control web browsers and automate UI interactions. Listing 4.1

shows an example selenium UI test case taken from our subject set. Typically, test

cases start by fetching the home page of the web app by using the provided url.

Thereafter, a series of test actions are performed and test oracles are used to verify

the resulting browser state according to a business case scenario of the web app.

Listing 4.1: Selenium JUnit Test Case

private WebDriver d r i v e r = new ChromeDriver () ;

@Before

public void setUp () {
d r i v e r . get (app u r l) ;

}

@Test

public void t es tCo l l ab t i veLog inUse r () throws Except ion {
d r i v e r . f indElement (By . i d (” username ”)) . sendKeys (” username001 ”) ;

d r i v e r . f indElement (By . i d (” pass ”)) . sendKeys (” password001 ”) ;

d r i v e r . f indElement (By . cssSe lec tor (” bu t ton . l o g i n b t n ”)) . c l i c k () ;

d r i v e r . f indElement (By . xpath (” / / * [@id=\”mainmenue \ ”] / l i [2] / a ”)) . c l i c k () ;

asser tTrue (d r i v e r . f indElement (By . cssSe lec tor (” body ”)) . getText ()

. matches (” ˆ [\\ s\\S] * username001 [\\s\\S] * $ ”)) ;

As the web app evolves, such UI tests created for an earlier version of web

app are used to validate existing functionality and detect any regression bugs that

may have been introduced in the newer version. An adequate UI test suite should

therefore cover the entire functionality of the web app through a combination of test

actions and oracles to aid early detection of regression bugs through test failures.

As web apps can be incredibly complex with heterogeneous components writ-

ten in multiple server-side and client-side programming languages, their bugs can

be equally daunting to detect and fix. Typically, individual server-side components

and client-side JavaScript are tested through unit testing while UI testing is used

as a form of end-to-end testing to validate high level use case scenarios from an

89

end-user point of view. Several researchers [60] have attempted to characterize

web application bugs in terms of their location, significance and so on by analyz-

ing the bug repositories of open source web apps. As UI tests only have access

to the browser state, a UI test suite can only reveal application bugs have a direct

manifestation in the UI. Such UI bugs are the focus of our mutation analysis for

ascertaining the quality of the test suites.

4.3 UI Manifestation of Real Faults in Web Applications
In traditional mutation testing, mutation operators are designed to perform code

changes that imitate programmer errors that cause application bugs. As majority of

the modern web pages are automatically generated, mutating them may not directly

imitate programmer errors. On the other hand, relying on mutation of source code

artifacts written by programmers is impossible given the fragmented nature of web

development ecosystem. Therefore, we decided to design mutation operators to

imitate the manifestation of application bugs on the UI of web pages. In order to

do so, we first needed to understand the UI manifestation of web app bugs.

Manual analysis of real faults in web applications in the existing research [60]

has focused on the location and root-cause analysis of faults in source code.

Marchetto et al. [88] also defined 32 categories of faults that can be used for fault

seeding in the web app source code. However, their work relied on introducing

faults specific to program constructs and technologies in use at the time of

publication.

In contrast, in this work, we are focused only on the front-end manifestation

of bugs regardless of their root-cause and specific web development frameworks.

Therefore, we collected real bugs reported for ten popular open source web apps

shown in Table 4.1 with a minimum of 1000 downloads in sourceforge [139] or

greater than 100 stars in GitHub. In total we collected 6331 reports tagged to

be bugs from bug repositories. We then randomly selected 250 bug reports to

be analyzed manually, where for each bug report, we ascertained the specific UI

characteristics that were considered to be faulty, and created tags to reflect them.

90

Table 4.1: Bug Repositories

Name loc languages # Bugs

tikiwiki [153] 4M PHP, JavaScript 1975

reactive trader [124] 117K C#, TypeScript 296

mrbs [103] 187K PHP, JavaScript 495

pgweb [114] 262K Go, JavaScript 553

tudu lists [158] 29K Java, JavaScript 68

addressbook [116] 45K PHP, JavaScript 173

crater [36] 80K Laravel, Vue 380

claroline [34] 350K PHP, JavaScript 336

koel [71] 475K Laravel, Vue 1297

phplist [117] 1.3M PHP, JavaScript 758

Unknown
21.2%

nonUI
34.5%

UI
44.3%

Figure 4.1: Analyzed Bugs

Cosmetic
19.2%

Behaviour
80.8%

Figure 4.2: Bugs with UI Manifestation

91

Application Bug

UI Manifestation

Functionality

missing
element (s)

wrong
textual data

unexpected
element (s)

wrong
element state

broken
event handling

broken
link

Appearance

wrong
size

wrong
position

wrong
color

Non UI

Installation External
Tool

Integration

Documentation Testing

Unknown

Figure 4.3: Web Application Bug Categories

92

Our bug report analysis for UI impact resulted in a hierarchy of categories as

shown in Figure 4.3.

Of the 250 bug reports we analyzed, we found that nearly 44% mention the im-

pact on UI, while 35% did not have any UI manifestation as shown in Figure 4.1.

In order to be able to manually analyze the bug reports, we familiarized ourselves

with each of the web apps in terms of the provided UI functionality. However,

we still could not assess the UI impact from the report for 21% of the reports. Of

the bugs which impact the UI, we found that 81% of them had an effect on the

behaviour of the web app as shown in Figure 4.2. Bugs categorized to have broken

functionalities were either because of incorrect handling of events associated with

web elements or content related faults. Only 19% of the bugs concerned the ap-

pearance of the web page, that were either found to be due to incorrect rendering of

the web pages or incorrect css styling resulting in overlapped or incomprehensible

content.

Using this study on the UI manifestation of real bugs in web applications, we

design our mutation operators for dynamic mutation of web pages in the browser.

4.4 Dynamic DOM Mutation
The functionality and data presented to the user through web app GUI is a DOM

that is built together by back-end and front-end programs written in languages

such as Java, PhP, JavaScript. UI test suites written using browser automation

tools such as Selenium therefore indirectly test all these programs while exercising

the DOM. Therefore, mutation operators targeting only client side JavaScript or

server side JSP cannot assess the quality of the test suites as the resulting mutants

only represent a subset of all possible changes that can occur in the DOM. In fact,

espousing our sentiment, Mirzaaghaei et al. [101] argue that the coverage of UI test

suites should be entirely determined using the GUI of the web app.

Considering the dynamic DOM state as a mutation target is interesting because

it is essentially the output of the web app under test. In fact, the dynamic DOM is

what end-to-end UI tests assess. UI tests are therefore expected to detect visual/-

textual changes in the rendered web page through oracles, and detect behavioural

changes by triggering UI actions. Mutation analysis of UI tests therefore will have

93

Table 4.2: Mutation Operators and their types

Type Operator Name Abbr

Attribute AttributeAdd AAM

AttributeDelete ADM

AttributeModify AMM

EventHandler EventHandlerAdd EHAM

EventHandlerDelete EHDM

EventHandlerModify EHMM

Tree TreeInsert TIM

TreeDelete TDM

TreeMove TMM

Content ContentInsert CIM

ContentDelete CDM

ContentModify CMM

Style StyleVisibility SVM

StyleColor SCM

StylePosition SPM

StyleSize SSM

to be designed to satisfy both these aspects of the UI testing to be considered useful.

Taking into account the UI impact of bugs, we designed 16 mutation opera-

tors, and placed them into five categories based on the aspect of web elements

they target, as shown in Table 4.2. Generated mutants can potentially imitate bug

categories corresponding to UI functionality, appearance or both. For example, a

changed id or class attribute can potentially impact the behaviour as well as ap-

pearance of the corresponding web element.

However, it is important to note the possibility that the mutation may not impact

the web page functionality or appearance at all in any way. For example, mutating

the position of an already invisible element will not change the web page.

In the rest of this section, we describe the mutation operators in greater detail

and provide examples using the sample web page shown in Figure 4.4.

94

Figure 4.4: Sample Web Page with Source Code

4.4.1 Attribute

In modern web apps, attributes are used to define characteristics or properties of

web elements, and therefore changing attribute values can impact both their ap-

pearance and behaviour. Some attributes such as “src” for ¡img¿ elements are

used to define the image urls. Attributes such as “action” for ¡form¿ elements can

even specify server communication.

For example, consider the sample web page shown in Figure 4.4. Using css

rules, appearance of heading and form is set using class selector, while id is used

for submit button. Our three attribute MOs are currently configured to mutate com-

monly used attributes taken from current HTML standard [5]. However, developers

can even use custom attributes to accomplish the same. In any case, being an exten-

sible framework, MAEWU can be configured to use any set of attributes considered

to be important for specific web apps, in order to generate interesting mutants.

95

4.4.2 Tree

Through the tree mutation operators, we aim to alter the DOM structure of the web

page. When a tree operator is applied to a web element, the element as well as its

children get affected. For example, in our sample web page, applying TreeDelete

operator on the div of the class form will lead to its deletion as well as its child

elements, the input element and the submit button.

The TreeMove operator can imitate the appearance “position” bugs as well as

impact functionality of the moved subtree because of the changed parent through

inherited event handling or style rules. The TreeInsert and TreeDelete operators

are designed to imitate the functionality bugs– unexpected-elements and missing-

elements respectively.

4.4.3 Content

Of the content related bugs we analyzed as part of the study, some of the root

causes included errors fetching data from back-end, parsing form input data, and

client-side scripting errors that prevent rendering of data.

In each of these analyzed bugs, the displayed textual content is either incorrect,

unexpected, or completely missing from the web pages. Our three mutation oper-

ators – ContentInsert, ContentDelete and ContentModify – are aimed at imitating

these content bugs.

It is also worth pointing out that most UI test cases typically access only inter-

active web elements and are likely to miss the content related bugs as a result.

4.4.4 Style

Cosmetic or appearance bugs we analyzed related to unexpected positioning, size

and color of specific web elements, primarily caused by wrong css properties com-

puted in runtime. Our analysis of appearance related bugs revealed three com-

puted (from static rules) CSS properties – color, position, size – We designed the

three style MOs – StyleColor, StylePosition, StyleSize – that mutate corresponding

css properties in runtime to imitate bugs causing content to be either incompre-

hensible, place elements in unexpected positions or have unexpected sizes. Our

fourth style MO, StyleVisibility imitates the functionality bugs missing-elements

96

and unexpected-elements by toggling the visible CSS property of web elements.

4.4.5 Event

We designed three MOs to cover the bugs related to broken event handling. Bugs

of this category affect the behaviour of the interactive elements like buttons while

often having no apparent change in the appearance and visible content of the web

pages. In order to imitate such bugs, we created three MOs that insert, remove or

modify the event handlers of web elements.

As such, broken event handling can result from a variety of reasons such as

bugs on the server side, broken server communication, or even bugs in JavaScript

libraries being used on the client side. However, since we are interested in imi-

tating the eventual behaviour observed by the end users, we directly modify the

event handlers for the web elements. In order to ensure the JavaScript code for

event handlers themselves are valid, we reuse already seen event handlers for other

elements within the web app.

97

Browser
States

Trace
Analyzer

Logical
Web Elements

Mutant
Generator

Mutation
candidates

Trace
Generator

Mutation
Engine

Test Suite

Report

Legend

output

input

Figure 4.5: Technique Overview.

98

Figure 4.6: Example Web Pages

4.5 Technique
Our technique, MAEWU, aims to assess the mutation score for a given UI test

suite and a web app URL by dynamically applying mutation operators to browser

states. MAEWU contains four main components 1) Trace Generator (T G), 2) Trace

Analyzer (TA), 3) Mutant Generator (MG), and 4) Mutation Engine (ME).

A high level architecture of MAEWU shown in Figure 5.2 indicates the in-

puts and outputs for each of the components. The mutation analysis performed by

MAEWU can be divided in two main processes. While the first process concerns

generation of a set of candidate mutants, the second part concerns evaluating the

test suite efficacy using the candidate mutants.

To generate the candidate mutants, given a test suite, T G collects the test trace

as a series of dynamic DOM states associated with test steps, and TA analyzes

them to identify the reappearance of web elements across states by using a page

fragmentation technique. MG then creates candidate mutants by applying muta-

tion operators on the identified web elements. To evaluate the efficacy of the test

suite, ME applies each candidate mutant to the dynamic DOM in the browser while

99

executing the test suite.

In the rest of this section, we describe each of our components in detail.

4.5.1 Trace Collection

Given a UI test suite, the trace generator (T G) captures a test suite trace as a se-

quence of trace elements, recording browser states as defined in 19 before and after

each test step. In addition, an “observer” script that runs in the browser records

JavaScript accesses to web elements for each browser state during test execution.

Definition 19 (Browser State (S)). is a tuple ¡D,V , K¿ where D is the HTML

source or DOM and V is the screenshot of the web page. K is the JavaScript access

map for the browser state recorded by the observer script, where each map entry

corresponds to a web element and its accesses.

A trace element as defined in 20 records the browser state transition in the web

app caused by the test step execution.

Definition 20 (Trace Element). is a tuple (ε , Sb, Sa, α), where the action α is

performed upon the web element ε in the browser state Sb results in the transition

to the browser state Sa.

4.5.2 Trace Analysis

Once the trace is collected for a web app, the trace analyzer (TA) first extracts a

list of all web elements in the recorded browser states and a set of text tokens.

The set of text tokens which we call the mutation data tokens (∆) are extracted

from content nodes as well as attribute values. Thereafter, since our approach of

web app mutation use web elements from dynamic DOM as mutation artifacts, we

designed the trace analyzer (TA) to cluster equivalent web elements into logical

web elements (ω) in order to achieve a consistency in mutation. Formally, logical

web elements are defined in 21.

Definition 21 (Logical Web Element (ω)). is a tuple ¡E, κ¿, where E is the set of

concrete web elements {ε1,ε2, ..} in which any two web elements εi,ε j are equiva-

lent to each other. κ is the combined list for JavaScript accesses of all web elements

100

Algorithm 2: Extract Logical Web Elements
Input: states = [S1,S2..] /* Set of Browser States */
Output: LWE /* Set of Logical Web Elements (ω) */

1 LWE=[]
2 foreach S ∈ states do
3 elems = getWebElems(S) /* all elements of state */
4 foreach ε ∈ elems do
5 foreach ω in LWE do
6 if belongsTo(ε ,ω) then
7 ω .add(ε) /* belongs to cluster */
8 added← true
9 end

10 if not added then
11 ωnew ← [ε] /* create new ω */
12 LWE.add(ωnew)
13 end
14 end
15 Function belongsTo(ε , ω):
16 ε , ← lwe[0]
17 F1← getFragment(node1) /* fragments from VIPS */
18 F2← getFragment(node2)
19 if TreeComp(F1, F2) = 0 then /* Tree Edit Distance */
20 if XPath(node1) = XPath(node2) then
21 return True /* same relative XPath */
22 return False
23 return False
24 End Function

in E, where access for each element is extracted from the access map K of its parent

state (S).

Consider the two example pages in Figure 4.6 that contain several web ele-

ments in common. If we decide to mutate the ”search box” in page1, we need to

ensure the same mutation is applied to it in the page2 as well if a reliable mutation

score for the UI test suite is to be computed. A similar problem does not arise

for the traditional source code mutation since the applied mutation is available for

every instantiation of the corresponding line of code, regardless of the dynamic

program state. For example, a mutation applied to a HTML source artifact in the

server will be available each time the artifact is accessed from the browser.

However, establishing the equivalence of web elements is challenging because

of the dynamic nature of modern web apps. Existing research shows that tech-

niques relying on attributes such as ids to compare web elements tend to be un-

reliable, because such attributes are often generated dynamically. Similarly using

101

XPath locators in web pages is also not desirable because we want to compare in-

dividual web elements across different web pages. For example in Figure 4.6, the

XPath for ”add Project” in the two pages is not the same.

Our solution is based on the observation that a single web page does not neces-

sary provide a singular functionality. Instead, each web page UI is stitched together

dynamically and contains independent UI components such as navigation bars that

reappear in different web pages. We associate the ownership of web elements to

smaller page fragments instead of the entire web pages, and use the equivalence of

these fragments to establish similarity of web elements.

Our element extraction algorithm shown in algorithm 2 uses a popular page

segmentation technique VIPS [26] to generate smaller page fragments, compare

fragments using a tree comparison technique [112], and, uses relative XPaths of

web elements inside these fragments for establishing their equivalence.

4.5.3 Generating Mutation Candidates

Given a set of logical web elements (ω) and available mutation data tokens (∆),

Mutant Generator (MG) generates a set of all possible mutation candidates by

selecting appropriate mutation operators based on the characteristics of the web

element and a random mutation data token if required.

Definition 22 (Mutation Candidate (C)). is a tuple (ω , O, δ) where ω is the log-

ical web element upon which the mutation operator O is applied using the optional

mutation data δ .

However, modern web pages are notoriously heavy [2, 4], where an “average”

web page is 2MB in size, can contain more than 600 web elements of 32 different

types. Without a notion of significance or importance associated with each mutant

to allow for a selection strategy, the total number of mutants to analyze can quickly

become unmanageable especially given the resource intensive nature of UI testing.

In this work, we employ a biased-spread random mutant selection strategy

where the probability (Equation 4.1) of selecting a mutant depends on its score (

Equation 4.2). Our score for a candidate combines 1) four static features of the

web element – isLea f Node, hasText, isInteractive, isDisplayed, 2) three

dynamic features based on the collected web element trace – numRepetitions,

102

numTestAccesses, numJavaScriptAccesses, and 3) its relationship to already

selected mutants. The score is positively impacted by high static (St) and

dynamic (Dn) scores, and negatively impacted by the spread score (Sp) based on

the presence of already selected mutants for the same web element.

The selection probability is defined as

Pr(Ca
j) =

score(Ca
j)

∑
n
i=1 score(Ca

i)
(4.1)

where a, b and c are constants such that (0 < a,b,c < 1), the set of ‘n’ available

candidates ({Ca
1..n}) and the set of ‘m’ already selected candidates ({Cs

1..m}), and

the candidate score is

score(Ca) = a∗St(ωa)+b∗Dn(ωa)− c∗Sp(Ca,{Cs
1..m}) (4.2)

Based on their relevance to the corresponding MO, the static features of web

element capture the usefulness of a given candidate based on its likelihood of imi-

tating a bug. For example, a candidate with the MO “ContentDelete” and a visible

page heading are likely to imitate bugs related to missing content. On the other

hand, the dynamic features capture the importance of a given web element based

on the frequency of its appearance and its extent of usage during test execution.

While the static features we define are inspired from AST based features for pro-

gram statements [154], dynamic features are similar to ranking based on execution

traces in source code mutation [100]. Our spread score (Sp), inspired from the

spread-random mutant selection strategy which selects only one mutant per source

code statement, decreases the candidate score instead of filtering them out.

We compute Static (St) and dynamic (Dn) scores as a sum of all corresponding

feature values, where values for a static feature (boolean) is 1 if true or 0 otherwise.

Finally, the probability of selecting a mutant (Equation 4.1) is then computed as the

ratio of a candidate score to the total score of all candidates.

4.5.4 Mutating Dynamic DOM and Mutation Score

For each mutation candidate (C =< O,ω >), the Mutation Engine (ME) resets the

web app and runs the test suite while applying the mutation operator (O) to all the

103

Table 4.3: Experimental Subjects

Subject Test Suite

Version Loc Cases Loc Loc

AddressBook 8.0.0 16298 27 49 1325
Claroline 1.11.10 352537 40 46 1822
Collabtive 3.1 264642 40 48 1935
MantisBT 1.1.8 141607 41 43 1748
MRBS 1.4.9 34486 22 51 1114
PPMA 0.6.0 575976 23 54 1232
Total 866995 196 47 9176

concrete instances (ε) of the logical web element (ω).

Existing techniques on mutation analysis for web applications mutate the

source code and compare the output DOM to determine the mutation kill

score [120, 135] where there are observable changes. This often involves manual

analysis of source code [100] to determine equivalent mutants as well. In our

analysis, the mutant is considered to be killed by the test suite if any of the test

cases fail either because of a failing test action or a test oracle.

4.6 Evaluation
To assess the efficacy of our mutation testing approach, we answer the following

research questions.

RQ1 How efficient is MAEWU in generating non-equivalent mutants?

RQ2 How useful are the generated mutants for improving end-to-end UI test

suites?

4.6.1 Experimental Setup

We use six open-source web apps as our subject systems, each with a manually

written JUnit Selenium UI test suite used in previous web testing research [22].

Table 4.3 lists the name, version and size of our subjects and the corresponding test

104

suite characteristics. All our experiments were run on a Red Hat Enterprise Linux

Server (RHEL-7) and Chrome-v84 web browser.

4.6.2 Competing Techniques

We found two existing mutation analysis tools for web app UI testing – WebMu-

Java and AjaxMutator. WebMuJava is developed by Praphamontripong et al. [120,

121] for JSP and Java Server based web apps. It is not publicly available. Nishiura

et al. [105] developed AjaxMutator to mutate Ajax and DOM API calls used in

client-side JavaScript of web apps. We explain the reason for not including Ajax-

Mutator below.

Issues using AjaxMutator

AjaxMutator uses the Rhino JavaScript parser to extract mutation targets for four

specific features of client-side JavaScript – event registration; timer; Ajax calls;

and DOM API to append and assigning attribute. The current implementation

for AjaxMutator takes a single JavaScript file as input and generates mutants. It

then runs a given Selenium Test Suite for all the generated mutants to compute the

mutation score. However, we were unable to use it on our subjects.

The first issue we faced is regarding the input JavaScript file expected by Ajax-

Mutator. All of our test subjects, which are modern web apps contained JavaScript

in multiple files and libraries along with “InlineHTML” within other program files

such as PHP, JSP. In order to get AjaxMutator to work on our subjects, we wrote a

file parser to extract JavaScript from source files. However, Rhino could not parse

these extracted JavaScript files, with sizes exceeding 50K lines for four of our sub-

jects where upon we spent considerable amount of time trying to clean the files

manually without success.

Secondly, for the two subjects we could generate mutants, we found no clear

mechanism to reliably apply the generated mutants into the web app when we use

this extracted JavaScript file. Because of this limitation, we could not even assess

the resulting impact of these mutants on the actual functionality of the web app.

105

4.6.3 Procedure and Metrics

For each of our subjects, we configure MAEWU with the URL, the accompanying

test suite, and a maximum limit of 50 mutants to be selected. Once MAEWU

generates the mutants and computes the mutation score, we manually analyzed the

impact on the behaviour of the web app for each of these selected mutants.

Analyzing mutants

In order to verify the impact of the mutation on the web page, we compare the live

mutated state to the original state first in terms of visual appearance, and second,

by exercising the functionality offered by target web element. If required, we also

analyze the client-side JavaScript to understand the impact of the mutation.

We classify the mutants that impact neither the functionality nor the appearance

of the web page to be equivalent. We then manually label the generated mutants

to assess their 1) perceived bug severity, and 2) mutant stubbornness to determine

their quality.[111]

The mutation score, bug severity score and stubbornness are computed only for

non equivalent mutants.

Computing Mutation Score

We compute the mutation score as the percentage of killed non-equivalent mutants

to the total number of non-equivalent mutants for each of the subject apps.

Computing Bug Severity

Based on the mutant impact on the UI, we compute a bug severity score shown

in Table 4.4 using 18 manually labelled boolean features adapted from previous

work [47]. In the interest of space, we skip discussing the actual adaption which

is available along with the full decision tree to compute severity in our tool reposi-

tory [170].

Computing Mutant Stubbornness

Existing work defines stubbornness through either, source code features [39] that

make certain mutants difficult to kill or, by their relationship to the test suites [56,

106

Table 4.4: Bug Severity based on User Perception

Description of Severity Severity Score

I did not notice any fault 0

I noticed a fault, but
I would return to this website again 1

I noticed a fault, but
I would probably return to this website again 2

I noticed a fault, and
I would not return to this website again 3

I noticed a fault, and
I would file a complaint 4

Table 4.5: Mutant Stubbornness

Required UI Testing effort Stubbornness Score

No action needed 0

Locate the element in the page 1

Perform action on the element 2

Assert content, attribute or CSS property
of the element 2

Perform action and Assert a property in the
resulting browser state 3

Perform action and navigate to a different page
to assert the effect of the action 4

177] such as the number of tests that can kill the mutant. The difficulty in finding

the right program input [39] to kill the mutant is the common theme in categorizing

mutants to be stubborn.

In this work, we model our stubbornness score based on the amount of effort

required for a UI tester to kill the mutant. The stubbornness score lies between 0

and 4 as shown in Table 4.5. On the one extreme are easy-to-kill mutants that cause

test failures by virtue of just reaching the mutated browser state. For example, it the

107

Table 4.6: Mutant Generation per subject

ad
dr

es
sb

oo
k

cl
ar

ol
in

e

co
lla

bt
iv

e

m
rb

s

m
an

tis
bt

pp
m

a

to
ta

l

candidates 13K 72K 329K 92K 61K 21K 586K
selected 50 50 50 50 50 50 300
Lwe size 45 37 74 69 45 69 56
Static Score 2.82 3.1 2.88 2.98 3.12 3.1 3
Dynamic Score 63 44 77 73 65 79 67
Web Elements 2.2K 1.8K 3.6K 3.4K 2.2K 3.4K 17K

Table 4.7: Mutants Generated by MAEWU

#
M

ut
an

ts

N
on

-E
q

E
qu

iv

%
N

on
-E

q

%
E

qu
iv

#
K

ill
ed

M
ut

at
io

n
Sc

or
e

addressbook 50 48 2 96 4 14 28
claroline 50 46 4 92 8 6 12
collabtive 50 43 7 86 14 6 12
mantisbt 50 48 2 96 4 6 12
mrbs 50 47 3 94 6 9 18
ppma 50 46 4 92 8 15 30

Total 300 278 22 93 7 56 19

mutation results in a blank page. On the other end of the extreme are the mutants

that can result in back-end changes that infect other browser states while keeping

the mutated state unaffected in terms of appearance or functionality. For example,

a wrong transformation of user input in the infected state that is saved and retrieved

from a database in another page.

Next, we discuss the results of our analyses and to save space, we will use the

abbreviated operator names for the rest of the chapter as defined in Table 4.2.

108

4.6.4 Results

RQ1 - Efficacy

Table 4.6 shows the total number of candidates extracted by the Mutant Generator,

and the characteristics of the 50 selected candidates per subject. On an average,

the logical web element (ω) size for each selected candidate is 56, with collabtive

having the highest repetition of concrete web elements at 78. Overall, nearly 17K

concrete web elements were selected to be mutated in order to apply these 300

mutations in the browser at runtime. The average static score which determines

the quality of mutant based on the web element and operator characteristics is 3,

whereas the average dynamic score is 67. Note that all the selected logical web

elements were covered by the test suites either directly by performing action on

them during test execution or indirectly by causing a JavaScript to access these

elements in the browser as recorded by our ObserverScript.

The results of our manual classification of these mutants based on their impact

on UI functionality and appearance is shown in Table 4.7. On an average, 93%

of the mutants generated by MAEWU were found to be non-equivalent. As shown

in Table 4.8, SCM operator is responsible for 7 out of the 22 equivalent mutants

that we found in total. In each of these 7 equivalent mutants, we found that the

mutation applied by SCM using the css property “color” has been overridden by

a css rule for the child elements. AAM generated 5 equivalent mutants because

the added attributes like “id” were not used for any of the JavaScript in the page,

rendering that attribute addition meaningless.

The most interesting and hard to classify equivalent mutants were created by

EHAM and EHDM operators which generated 3 and 2 equivalent mutants respec-

tively. In our implementation, we used the JavaScript “element.addEventListener”

API to add and replace event listeners. We provide a random event handler func-

tion that is recorded by the Trace Generator for the subject. However, we found two

reasons for EHAM having no impact on app functionality. First, because the func-

tions being called within the new event listener were not available in the browser

state being mutated, and therefore they just fail silently with no change to function-

ality in case of EHAM. Second, our mutation script could not override the default

109

behaviour of the elements as defined by the browser. In future, we plan to auto-

matically detect when such default behaviour impacts JavaScript manipulation of

event listeners and select candidates accordingly.

The rest of the operators had a close to or equal to 100% success rate in gener-

ating non equivalent mutants.

110

Table 4.8: Mutant quality Per Operator
A

A
M

A
D

M

A
M

M

E
H

A
M

E
H

D
M

E
H

M
M

SC
M

SP
M

SS
M

SV
M

TD
M

TI
M

TM
M

C
D

M

C
IM

C
M

M

To
ta

l

#Mutants 9 10 13 15 4 4 29 26 37 37 27 30 17 17 6 19 300

#Non-Eq 4 10 12 12 2 4 22 26 36 35 27 30 17 17 6 18 278

#Killed 0 2 5 0 0 0 0 7 6 8 13 1 6 3 0 5 56

Non-Eq % 44 100 92 80 50 100 76 100 97 95 100 100 100 100 100 95 93

Mutation Score 0.00 0.20 0.42 0.00 0.00 0.00 0.00 0.27 0.17 0.23 0.48 0.03 0.35 0.18 0.00 0.28 0.20

Bug Severity 2.0 2.3 2.5 2.5 2.5 2.5 0.7 1.3 0.8 2.2 2.4 1.8 1.4 2.0 1.8 2.0 1.7

Stubbornness 2.5 2.8 3.1 3.0 3.0 2.8 2.0 2.0 2.0 1.9 1.5 2.0 2.1 2.0 2.0 2.1 2.1

111

RQ2 - Usefulness

Table 4.8 shows the results of our manual analysis of mutants as well as the muta-

tion scores for the test suites for each of our mutation operators.

Our manual analysis revealed that all three event handlers MOs have a pre-

dictably high bug severity score because they are designed to break the behaviour

of the web elements which is perceived to be the most severe fault in a web page.

While maintaining a high severity score, EHAM, EHDM and EHMM also created

mutants with the highest stubbornness score because killing these mutants required

both performing action as well as verifying the result of the action. A mutation

score of 0 for the UI test suites being evaluated is also indicative of the difficulty

in killing these mutants.

Interestingly, ADM and AMM also have a high bug severity score similar to

event handler MOs because they are also capable of affecting the behaviour. For

example, deletion of the “href” and “input.type” attribute was particularly effective

in breaking the element behaviour. However, the test suites were able to kill these

mutants more frequently with 42% of AMM mutants being killed because they

impact common interactive web elements that are often used by the test suites.

TDM operator has also generated mutants with a high bug severity primarily

because it causes the pages to lose information and functionality by deleting parts

of the page. However, these mutants are very easy to kill with a stubbornness score

of only 1.5. Often, to kill the mutant, it is enough for a test script to try and locate

the web element

Indeed, other MOs that can cause loss or change of information – SVM, CDM,

CIM and CMM – have a high bug severity score and generate stubborn mutants

because a tester has to either perform an action or assert the expected property of

the target web element in order to kill the mutant. Interestingly, however, TMM

which also can cause information loss through DOM hierarchy manipulation often

caused only cosmetic defects, and therefore has a lower severity score.

In terms of usefulness, SCM generated the mutants with worst severity of 0.7

while generating majority of the equivalent mutants in our entire experiment. SSM

and SPM have a similarly low severity score overall but generated mutants that

impacted the behaviour of the page by blocking or reducing the accessibility of

112

content or functionality of other web elements.

Overall, we found that the operators that are able to generate mutants of high

bug severity and high stubbornness are most useful in exposing the weaknesses of

the UI test suites. On an average, MAEWU generated mutants with a severity of

1.7 and a stubbornness score of 2.1, while exposing the limitations of existing test

suites for our subjects which have a low mutation score of 0.20.

4.6.5 Discussion

Web App Dynamism and Test Fragility

In RQ2, we used two factors, bug severity and stubbornness score, in understand-

ing if a mutant can be useful in improving existing UI test suites. However, an

important aspect of modern web apps that we did not take into consideration in

the current work is the presence of dynamic data. For example, content or element

properties like ‘id’ that are dynamically generated and should not be considered to

be bugs. So, generating mutants that may be similar to these dynamic changes to

the web page will not be useful in determining the fault revealing capabilities of

the test suites. Indeed, such mutants may deter practitioners from employing the

framework, as these mutants are similar to equivalent mutants.

However, one of the biggest challenges of maintaining an end-to-end UI test

suite for web apps is the fragility of web element locators [74], which require costly

manual analysis and test maintenance. An interesting idea would be to use the MOs

designed in this work, and select mutants that can reveal fragile test locators and

test oracles.

Bug Severity for modern web apps

The existing study on the bug severity [47] used in our evaluation was primar-

ily based on older web apps with limited dynamism. The study classifies any css

related problem to be cosmetic in nature and gives a very low severity score. How-

ever, modern web apps rely heavily on fluid layout models in order to make the

web app functionality accessible on multiple device and display configurations.

While SCM, SSM, SPM generated mutants of very low severity on a fixed display

113

configuration, these can be valuable in validating layout features and revealing lay-

out bugs. Therefore, we believe a bridging study to better model the appearance

related bugs that impact modern web apps is needed to determine bug severity for

such mutants.

4.7 Related Work
For mutation analysis of web apps for assessment of UI test suites, there are only

two existing research papers. Praphamontripong et al. [120, 121] define and imple-

ment mutation operators for JSP and Java Server based web applications in a tool

called webMuJava which extends general Java based mutation operators. Nishiura

et al. [105] defined mutation operators specific to client-side JavaScript of web ap-

plications used for DOM manipulations. To overcome the limitations of existing

work owing to their usage of source code mutation, we propose to mutate dynamic

DOM to mutate GUI functionality. Maezawa et al. [83] validates ajax code using

three delay based mutation operators.

In addition, for web testing in general, Shahriar et al. [135] defined 11 muta-

tion operators on PHP and JavaScript source code to find bugs related to cross-site

scripting. Walsh et al. [161] implement CSS mutation operators that change the

CSS rules related to the size (e.g., width) of web elements in order to simulate

cross-browser page rendering faults. Mirshokraie et al. [100] developed mutation

operators specific to JavaScript in web apps in addition to generic JavaScript op-

erators. We do not consider either of these tools to be competing techniques to

our work because they are neither intended to assess UI test suites, nor necessarily

applicable to all web apps.

In broader area of mutation analysis for GUI applications, Alegroth et al [7],

apply mutations to desktop Java application to evaluate GUI testing approaches.

Oliveira et al. [106] developed scripts to automate mutant generation for seven of

the 18 mutation operators defined in [7] to show that GUI mutation operators are

better than traditional method level Java mutation operators in seeding GUI faults

in applications. Linares-Vásquez et al., [77, 102] created a taxonomy of Android

bugs with the purpose of defining source-code mutation operators for Android

apps. Deng et al. [41, 42] defined mutation operators to change core components of

114

Android apps (e.g., intents, event handlers, XML files and activity lifecycle). Ad-

ditionally, Luna et al. [81] presented Edroid, a tool that uses 10 mutation operators

oriented to validate changes in the GUI.

In both the fields, namely desktop GUI and mobile testing, source code muta-

tion has been employed to a good effect because of the homogeneity of the pro-

grams under test.

4.8 Threats to validity
External validity threats concern the generalization of our findings since we used

a limited number of subject apps and analyzed only 300 mutants overall. We have

chosen six subject apps used in previous web testing research, pertaining to differ-

ent domains, and fully randomized the mutants to be analyzed in order to mitigate

the threat. Threats to internal validity come from the manual labelling of mu-

tant categories and features, which was unavoidable because no automated method

could provide us with the required ground truth. The manual bug analysis, mu-

tant analysis and labelling was performed by the first author, and the methodology

was developed together by the two authors by analyzing example bugs, mutants

independently and establishing a discussion to resolve conflicts. For bug severity

analysis, we used a labelling methodology outlined in prior work to mitigate the

threat to validity. For reproducibility of our findings, we made our tool publicly

available [170] along with usage instructions and used subject systems.

4.9 Conclusion and Future Work
Despite the significance of UI test suites in validating web app functionality, cur-

rently, no mutation analysis tool exists for ascertaining their fault-finding capabil-

ities. Existing tools for web app mutation testing rely on source code mutation

and therefore cannot be universally applied because of the heterogeneous web app

development ecosystem. In this work we developed MAEWU, an extensible mu-

tation analysis framework for web apps which mutates the dynamic DOM during

test execution. Given only the web app URL and a UI test suite to assess, MAEWU

is able to automatically extract unique web elements in the web app and generate

non-equivalent mutants that imitate UI manifestation of real web app bugs, se-

115

lect useful mutants based on the web element characteristics and perform mutation

analysis to reveal the limitations of the test suite. As part of the future work, we

plan to improve the mutant selection strategy by incorporating human feedback to

compute mutant score.

116

Chapter 5

Carving UI Tests to Generate API
Tests and API Specifications

5.1 Introduction
Software applications routinely use web APIs for establishing client-server com-

munication. In particular, they increasingly rely on web APIs that follow the REST

(REpresentational State Transfer) architectural style [53] and are referred to as

RESTful or REST APIs. A typical REST API call starts with an HTTP request

made by the client, e.g., the front-end of a web application running in the browser,

and ends with a response sent by the server or the back-end of the application. To

help clients understand the operations available in a service and the request and

response structure, REST APIs are often described using a specification language,

such as OpenAPI [109], API Blueprint [12], and RAML [123].

Web application testing is typically performed at multiple levels, each employ-

ing different techniques/tools and with different end goals. Unit-level testing of

client- and server-side components focuses on validating the low-level algorithmic

and implementation details and achieving high code coverage. In contrast, UI-

level testing (also called end-to-end testing) focuses on covering navigation flows

from the application’s web UI, exercising various tiers of the application in end-

to-end manner. In between unit and UI testing, API testing places the focus of

testing on the operations of a service as well as sequences of operations; it ex-

117

ercises the server-side flows more comprehensively than unit testing but without

going through the UI layer. API-level testing is guided by code-coverage goals as

well as API-coverage goals (e.g., [91]).

For web applications that use RESTful APIs whose specifications are available,

a number of automated testing techniques and tools (e.g., [16, 17, 35, 55, 61, 68,

72, 78, 92, 133, 143, 160, 163]) could be leveraged for API-level testing. These

tools take as input an API specification, and automatically generate test cases for

exercising API endpoints defined in the specification. However, in practical sce-

narios, using these tools may not always be possible.

First, for applications that do not have RESTful APIs, such tools are inapplica-

ble. This rules out large classes of web applications, such as Java Enterprise Edition

as well as legacy web applications, which could benefit just as well from automated

API-level testing. Second, for web applications with RESTful APIs, API specifi-

cations may not be available. This can occur because of different reasons, often

because the APIs are meant for use by the specific web application only or appli-

cations within an enterprise, and not exposed for invocation by external clients.

Thus, formal API documentation is considered less important and not done due to

development pressures or other factors. Moreover, even when API specifications

are available, they can be obsolete and inconsistent with API implementations [90].

As a web application and its APIs evolve, the specifications—which can be large

and complex—often fail to co-evolve due to the maintenance effort involved.1

In this work, we address the challenges of enabling automated API-level test

generation universally for web applications, irrespective of whether they use REST-

ful web services, and automatically inferring OpenAPI specifications for web ap-

plications that use RESTful APIs. We present a dynamic technique that executes

the web application via its UI to automatically create (1) API-level test cases that

invoke the application’s APIs directly, and (2) a specification describing the appli-

cation’s APIs that can be leveraged for development and testing purposes.

Although prior work has investigated carving unit-level tests from system-level

1Although there exist tools for automatically documenting REST APIs (e.g., SpringFox [142]
and SpringDoc [141]), which can reduce the cost of keeping API specifications up-to-date with API
implementations, their applicability is limited (e.g., to web applications implemented using Spring
Boot [140]).

118

executions using code-instrumentation techniques (e.g., [50, 67, 165]), no tech-

nique exists for carving API-level test cases from UI paths or test cases.

Our technique monitors the network traffic between the browser and the server,

while navigating the application’s UI, and records the observed HTTP requests and

responses. Then, it applies filtering to exclude the requests (and their responses)

that are considered unnecessary for API testing. Next, it builds an API graph from

the filtered requests and analyzes the graph to infer a specification that captures

API endpoints (or resource paths), the applicable HTTP methods (e.g., GET, POST),

and the request/response structure for each API operation (combination of HTTP

method and API endpoint). A key feature of our technique is that it infers path

parameters or variables for API endpoints from concrete endpoint instances ob-

served during the navigation of UI paths. Moreover, it uses a novel algorithm for

directed API probing and API graph expansion to discover more concrete endpoint

instances that would otherwise be missed by UI path navigation alone.

The generated API specification can serve as documentation for server-side

APIs of a web application (even if the APIs are not RESTful) and also be fed as

input into an existing API testing tool for automated test generation (e.g. [16, 17,

61, 92, 160]) or used for checking inconsistencies in existing API specifications

(for RESTful APIs).

The “carved” API test cases are derived from UI paths. Because these tests

bypass the UI layer, they execute much more efficiently and are less prone to brit-

tleness than UI-level tests. Yet, they cover the same server-side code as the UI

paths from which they are derived and exercise the APIs in ways that they would

be invoked from the UI.

We implemented our technique in a tool called APICARV that takes as input

a UI test suite (generated or manually written) and carves API test cases and an

OpenAPI specification.

We conducted an empirical study on seven open-source web applications to

evaluate the technique’s effectiveness in carving API tests and inferring OpenAPI

specifications. With respect to test carving, our results are two-fold. First, they

quantify the expected benefits of carved API tests: the tests attain similar cov-

erage as the UI test paths from which they are derived, but at a fraction of the

execution cost of UI tests: on average, more than 10x reduction in test execution

119

time. Second, our results illustrate that carved API tests can increase the coverage

achieved by two automated API test generators, EvoMaster [16, 51] and Schemath-

esis [62, 131]: on average, 52% (99%) gains in statement (branch) coverage for

EvoMaster and 29% (75%) statement (branch) coverage gains for Schemathesis.

Finally, for OpenAPI specification inference, our results show that the technique

computes API endpoints (or resource paths) with 98% precision and 56% recall

against the ground truth of existing API specifications. These results demonstrate

the benefits of our technique.

The contributions of this work are:

• A first-of-its-kind approach for carving API test cases from UI paths that en-

ables API-level testing for web applications, irrespective of the frameworks

they use.

• A novel technique for inferring API specifications for web applications that

use RESTful services.

• An implementation of the techniques in a tool called APICARV that is pub-

licly available [171].

• Empirical assessment of APICARV, demonstrating the tool’s effectiveness

and the benefits of carved tests.

5.2 Background and Motivating Example
REST APIs [53] are typically described in a specification (e.g., in

OpenAPI [109] format, previously known as Swagger) that lists the available

service operations, the input and output data structures for each operation, and the

possible response codes. Listing 5.1 shows a snippet of the OpenAPI spec for the

REST API of a web application called realworld [54] (one of the applications

used in our evaluation). The spec lists path items (under paths:), where a path

item consists of a resource path (also referred to as “API endpoint”) together with

one or more HTTP methods (or “Operations”). The path item illustrated in

Listing 5.1 shows the resource path (line 6), the HTTP method (line 7), the

parameters specification (lines 8–13), and the response specification (lines 14–20).

120

Listing 5.1: Example OpenAPI specification.
i n f o :

t i t l e : Conduit API
servers : f

− u r l : h t t p : / l o c a l h o s t :3000/ ap i
paths :
/ a r t i c l e s /{ i d } : / * path i tem * /

get : / * HTTP method * /
parameters :

− name : i d
i n : path
requ i red : true
schema : In tege r
example : 2

responses :
200:

d e s c r i p t i o n : OK
content :

a p p l i c a t i o n / json : / * MIME * /
schema :

r e f : ’ / schemas / S ing leAr t ic leResponse ’

GET- /articles
GET - /tags
GET- /users/user2
GET - /users/user1/info

GET - index.html
Resources

API
API

POST - /users/user1/follow

GET - newArticle.html
Resources

GET - /users/user2
API

POST- /articles
GET - /articles/2
GET - /users/user2/info

GET - article.html
Resources

API
POST- /articles/2/comments
GET - /articles/2

API

Load URL

Click [New Article] Click [Publish Article] Click [Post Comment]

Bl
an

k
Pa

ge

Comments
New Comment

Post Comment

Article content with extra content.

User2
June 31, 2031 Article 2

tag1 Edit Article Delete Article

User2SettingsNew ArticleHome

Comments

New Comment
Post Comment

User2
June 31, 2031

Comment 1

User2SettingsNew ArticleHome

Article content with extra content.

User2
June 31, 2031 Article 2

tag1 Edit Article Delete Article

Article 1
Article content
More

»

tag1

Tag2

tag3

Tags

Prev 2 ...1 Next

User2SettingsNew ArticleHome

Article Feed
FollowUser1

June 31, 2031

Article 1
Article content
More

»

Prev 2 ...1 Next

User2SettingsNew ArticleHome

Article Feed
UnfollowUser1

June 31, 2031

Click [Follow]

tag1

Tag2

tag3

Tags

User2SettingsNew ArticleHome

Article Title

What is this article about

Write your article ..

Enter Tags

Publish Article

Figure 5.1: Example illustrating a sequence of UI actions and states along
with the API calls that are triggered by UI events.

The response specification lists the status code (line 15) and the response data

format (line 18) and the structure (lines 19–20). The structure definition contains

a reference to a schema defined elsewhere in the document (omitted here).

The resource path /articles/{id} (line 6) is specified as a URI template [59],

with path parameter id. Such a resource path describes a range of concrete URIs

via parameter expansion. A concrete URI instance in an HTTP request targeting

that endpoint contains an integer value for id (e.g., /articles/2). More gener-

ally, a path item can contain four kinds of parameters—path, query, cookie, and

header. Path and query parameters are related to the URI, whereas header and

cookie parameters are associated with HTTP request headers.

121

Figure 5.1 shows a UI test path for the realworld [54] web application. The

test performs five UI actions that navigate through different application states. Each

action exercises a specific functionality. For example, “Click[follow]” invokes

the functionality to follow a given user. The figure also shows the server-side

APIs invoked by the browser for each UI action. The UI states are then updated

based on the server response. For instance, “Click[follow]” invokes the API

“POST[/users/user1/follow]” and the UI state is updated, to show that “follow

user” succeeded.

From the perspective of functional testing of the server-side APIs of a web ap-

plication, the UI actions and the API calls invoke the same functionality and, there-

fore, would have the same code coverage and fault-detection abilities. However,

invoking the APIs directly, instead of going through the UI layer has advantages:

API calls exercise the service-side functionality much more efficiently and are less

prone to the brittleness usually associated with UI tests [58], while exercising the

APIs in the manner they are invoked from the UI. Thus, carved API tests can be

convenient for developers to use in the course of their development activities. This

is not to say that carved API tests are an alternative to, or replacement for, the UI

tests. UI testing has an important role to play in covering end-to-end flows through

all the application tiers; however, such testing is more suitable for system-level

or acceptance testing in practice, and less so for supporting developers in their

server-side development activities. Our first goal in this work, therefore, is to en-

able API-level testing such that it is universally applicable for all web applications

irrespective of the web frameworks they use.

The second goal of our work is to infer an API specification, such as the one il-

lustrated in Listing 5.1, automatically for the server-side APIs of a web application.

The inferred specification documents the APIs and can also be used as input to au-

tomated API testing tools (e.g., [16, 17, 61, 92, 160]). API specification inference

is applicable to web applications that implement RESTful APIs. Although API

specifications could also be inferred for other types of web applications and could

serve as useful documentation of server-side APIs, they would be less effective as

inputs to automated API testing tools.

The core challenge in specification inference is how to compute resource

paths with path parameters accurately (e.g., the {id} component of resource path

122

Report

API Test Carving API Specification Inference

API
Recording

API
Filtering

API Graph
Analysis

API
Probing

API Test
Execution

Raw API List API Test Suite OpenAPI Spec

Web
Crawling

UI Test Suite

API
Graph

Augmentation with
successful API calls

Figure 5.2: Overview of our technique APICARV.

/articles/{id}). The concrete URI instances in the requests observed at runtime

contain integer values for id, such as /articles/2. The technique has to

determine which segments of concrete URIs represent path parameters. Moreover,

a resource path can have multiple path parameters, which adds to the complexity

of the problem. In the next section, we present a dynamic-analysis-based carving

technique for addressing these challenges.

5.3 Approach
Figure 5.2 presents an overview of our technique called APICARV. The input is a

suite of UI test cases for a web application—the test cases could be automatically

generated (e.g., created via automated web crawling) or implemented by devel-

opers. The output consists of an API-level test suite, along with a test-execution

report, and for applications that use RESTful APIs, an OpenAPI specification de-

scribing the server-side APIs of the web application. The API test suite is com-

posed of carved test cases that are augmented with API calls made during specifi-

cation inference. The test-carving phase of the technique involves API recording

and API filtering. The specification-inference phase constructs an API graph from

the API test suite, and analyzes the graph to create an OpenAPI specification. A

key step during specification inference is API probing, which attempts to expand

the set of resource paths observed during UI test execution and discover additional

information for creating more accurate specifications as well as augmenting the

carved test suite. Next, we describe the two phases of the technique in detail.

123

5.3.1 API Test Carving

APICARV performs API test carving in two steps. In the first step, API recording,

the technique monitors API calls that are triggered through the execution of the UI

test suite and logs the raw API calls. To record API calls, we add network listeners

to the browser executing the UI tests, which capture the raw outgoing and incoming

HTTP traffic. As Figure 5.1 illustrates, a UI action can result in multiple API calls

being executed, e.g., Click[Publish Article] triggers one POST and three GET

requests. These requests, together with their corresponding responses, are logged

during API recording.

In the second step, API filtering, the technique applies a series of filters—

operation filter, status filter, and MIME filter—to the raw API calls to remove the

calls that are irrelevant for API test and specification carving. The operation filter

is based on HTTP method checking and is designed to omit methods that are un-

related to resource manipulation. This filter removes all calls with HTTP methods

TRACE and CONNECT. The status filter checks the response status codes and ex-

cludes calls with unsuccessful requests, indicated by 4xx and 5xx response codes.

Finally, the MIME filter checks the MIME type of the response payload and re-

tains only those calls whose response payloads contain JSON or XML data (i.e.,

MIME types text/json or text/xml). For example, the resource-related API calls

shown in Figure 5.1, which are irrelevant for API-level testing, are removed during

filtering.

In the implementation of our technique, the filtering step is configurable. The

three filters described here proved to be adequate for our experimentation. How-

ever, the user can configure filtering to prevent omission of certain requests con-

sidered essential for API testing or provide custom filters to omit additional types

of API calls not covered by the three filters. Filtering configuration may also be

needed based on web application characteristics; e.g., the MIME filter would be

relevant if the application consists of RESTful APIs.

The output of the filtering step consists of sequences of API calls from which

the carved API test suite is created.

124

API Sequence

API graph

API Sequence
 with Probes

Pr
ob

es

Ex
ec

ut
io

n
O

ut
pu

t

Expanded API Graph

OpenAPI
Specification

Start Stop

No Yes

API
 Runner

ProberAPI Graph
Builder

Spec
Generator

Invoke
Probing?

Legend Return Call Process Decision I/O

AP
I G

ra
ph

Figure 5.3: The specification-inference flow (InferSpec).

5.3.2 API Specification Inference

As discussed in 5.2, the core problem in specification inference that our approach

addresses is computing path parameters for resource paths. The technique has to

detect the path components of concrete URI instances that represent parameters,

while handling paths with multiple parameters and compensating for server-side

state changes as a result of UI actions that can potentially impact server responses

for URIs.

Figure 5.3 presents a flow chart, InferSpec, illustrating specification infer-

ence. InferSpec takes as input the API sequences created by API carving and

produces as output an API specification. It builds an API graph to represent the

discovered resource paths and analyzes the graph to create the API specification.

InferSpec also analyzes the graph to generate API probes (i.e., concrete API re-

quests) that are executed against the application to discover additional valid API

calls that are missing in the initial set of API sequences.2 This step is intended to

address the incompleteness of the initial API sequences and, thereby, improve the

accuracy of the inferred API specification. As an additional benefit, the successful

probes can be used for augmenting the carved API test suite, potentially increasing

2In the implementation of the technique, API probing can be limited by upper bound on explo-
ration time or number of probes executed.

125

Algorithm 3: API graph construction
1 Function BuildAPIGraph:

Input: apiset← [A1...An] /* Set of API Calls */
Init: G ← φ /* API Graph for the given set of API calls */

2 foreach A ∈ apiset do
3 path← A.R q.URL.path
4 SegArray← path.split() /* split path into segments */
5 parent← root /* a dummy starting node */
6 foreach Segi ∈ SegArray do
7 parentPath← join(Seg0, . . . , Segi−1)
8 v← φ /* path parameter inference later */
9 if i = SegArray.size then

10 end-point← True
11 else
12 end-point← False
13 end
14 pathSeg← (Segi, i, parentPath, SegArray.size, endpoint, v)
15 segExists← for-all νs ∈N AreEqual(pathSeg, νs)
16 if segExists then
17 G.addEdge(parentNode, νsim)
18 parentNode = νsim

19 else
20 G.addNode(pathSeg)
21 G.addEdge(parentNode, pathSeg)
22 parentNode = pathSeg
23 end
24 end
25 end
26 return G

27 end
28 Function AreEqual (ν1, ν2):

Output: True or False
29 if (ν1.n ̸= ν2.n) ∨ (ν1.d ̸= ν2.d) then
30 return False /* different name or path index */
31 end
32 if ν1.p = ν2.p then
33 return True /* same name, path index, and parent path */
34 end
35 if IsEndPoint(ν1) ∧ IsEndPoint(ν2) then
36 return CompareResponses(ν1.l, ν2.l)
37 else
38 return False /* different parent path */
39 end
40 end

its coverage.

API Graph Construction

Algorithm 3 presents the algorithm for building the API graph. Before describing

the algorithm, we introduce some terminology.

126

Definition 23 (Path Segment). Given a URI U , a path segment ν is a tuple (n, d, p, e,
l, v), where n is the segment string, d is the index of the segment in U , p is the parent
path for ν, e is a boolean indicating whether ν is the final segment of U (and, therefore, an
API endpoint), l is the response payload (if e is true), and v is the path parameter inference
result for ν.

Definition 24 (API Graph). An API graph G = (νr, N , E) is a directed acyclic graph,
where νr is the dummy root node of the graph, N is a set of nodes, and E is a set of
edges. Each node in N is a path segment and a pair of consecutive segments in a URI is
connected by an edge in E .

Definition 25 (Graph Path). A graph path in an API Graph is a sequence of path seg-
ments (νr, . . . , νx) that connects the root node νr to any graph node νx. A complete path is
a path from νr to a node where ν.e is true.

An API graph is constructed for a set of URIs (from API calls). For example,

each API graph illustrated in Figure 5.4 represents the URIs shown to the left of

the graph. Each graph node, except the root node, represents one or more segments

from the URIs, and each complete path represents a URI.

127

/users/user1/info
/users/user2/info
/users/user1/follow
/users/user2
/tags
/articles
/articles/2
/articles/2/comments

/

articles

2user2

users

user1

follow comments

tags

info

/users/{user}/info
/users/user1/follow
/users/user2
/tags
/articles
/articles/2
/articles/2/comments

(a) API calls carved from the UI execution

/

articles

2
user2

users

user1

follow comments

tags

info

/users/user1/info
/users/user2/info
/users/user1/follow
/users/user2
/tags
/articles
/articles/2
/articles/2/comments
/users
/users/user1

/users/{user}/info
/users/user1/follow
/users/{user}
/users
/tags
/articles
/articles/2
/articles/2/comments

(b) Probing Stage 1: probes for intermediate nodes

/users/user1/info
/users/user2/info
/users/user1/follow
/users/user2
/tags
/articles
/articles/2
/articles/2/comments
/users
/users/user1
/users/user2/follow

/

articles

2user2

users

user1

follow comments

tags

info

/users/{user}/info
/users/{user}/follow
/users/{user}
/users
/tags
/articles
/articles/2
/articles/2/comments

(c) Probing Stage 2: probes from bipartite analysis

/users/user1/info
/users/user2/info
/users/user1/follow
/users/user2
/tags
/articles
/articles/2
/articles/2/comments
/users
/users/user1
/users/user2/follow
/articles/1
/articles/1/comments
/tags/1
/tags/2
/tags/3

/users/{user}/info
/users/{user}/follow
/users/{user}
/users
/tags
/articles
/articles/{article}
/articles/{article}/comments
/tags/{tag}

/

articles

2user2

users

user1

follow comments

tags

info

1 2 31

(d) Probing Stage 3: probes from response analysis

Each subfigure shows the API graph (middle) built from API calls (left) and the inferred specification (right). The color coding of API calls (spec paths)
indicates calls recorded (paths created) during UI navigation (black) and probes (paths) created in the previous stage (green) and the current stage (red).
The color coding of nodes illustrates nodes created after UI navigation (gray), nodes with responses discovered via probing (green), and nodes with
extra responses because of probing (yellow). The edge colors highlight edges created by probes in the previous stage (green) and the current stage (red).

Figure 5.4: Illustration of specification inference.

128

An API graph is constructed for a set of URIs (extracted from API calls). To

illustrate, consider the API graphs shown in Figure 5.4. Each API graph represents

the URIs shown to the left of the graph. A graph node, except the root node,

represents one or more segments from the URIs, and each complete path represents

a URI.

Function BuildAPIGraph (lines 1–27) of Algorithm 3 iterates over a given set

of API calls (A) and builds an API graph by parsing each request URI into a path

in the graph. For each URI, the algorithm splits the URI into segments and then

builds a path segment for each segment (lines 7–14). If a path segment ν is not

similar to any of the existing path segments in the graph, ν is added to the graph

(lines 15–23).

The similarity of two path segments is determined by the function AreEqual

(lines 28–40), which first compares the names and path indexes of the two segments

(line 29). If either of these do not match, the path segments are considered to be

different. For example, as shown in Figure 5.4, each string segment in a URI has

its own node in the graph. If the names and path indexes match, the function next

compares the parent paths of the segments (using string comparison) and considers

the segments to be equivalent if the parent paths match (lines 32–34). Otherwise,

if the segments represent endpoints, the function CompareResponses is called to

determine segment equivalence (lines 35–36). Note that a response object is avail-

able for a path segment only if there exists an API call that ends at the segment,

making it an endpoint.

CompareResponses (not shown in Algorithm 3) relies on the structural simi-

larity of responses instead of matching the entire responses. For a response with

JSON or XML data, it ignores the values and builds a tree with keys in the data.

It then asserts the structural similarity of the trees to determine response simi-

larity. For example, consider the requests [GET /users/user1/info] and [GET

/users/user2/info] in Figure 5.4) with responses {"id":1, "name":"user1",

"role":"user"} and {"id":2, "name":"user2", "role":"user"}. To com-

pare these two responses, the technique builds trees using the keys [id, name,

role] and invokes a tree-comparison technique (APTED [113]) to check their

equivalence.

129

Algorithm 4: Generating API specification from API graph
1 Function ExtractOpenAPI:

Input: G /* API Graph after path variable inference */
Output: uriTemplates← φ

2 G ←MergeLeafNodes(G)
3 foreach do ν ∈ G
4 if νi.e = True then
5 paths← GetGraphPaths(νi)
6 if paths.size ¿ 1 then
7 template← getURITemplate(paths)
8 else
9 template← paths[0]

10 end
11 uriTemplates.add(template)
12 end
13 return uriTemplates
14 end
15 Function MergeLeafNodes:

Input: G /* API Graph for the given set of API calls */
16 foreach νi ∈ {νn} do
17 foreach ν j ∈ {νn} do

/* Assign a variable when nodes have matching responses

*/
18 if (νi.e=True) ∧ (ν j .e=True) ∧ (CompareResponses(νi, ν j)=True) then
19 νi.v = ν j .v = variableMap.get()
20 end
21 end
22 return G

23 end
24 Function GetGraphPaths:

Input: G, νx /* An API Graph and a node in it */
Output: paths← φ

25 foreach ζi ∈ G.getPathsto(νx) do
26 path← φ

27 foreach νi ∈ {νn} do
28 if νi.v != φ then
29 path.add(νi.name)
30 else
31 path.add(νi.v) /* v is set by MergeLeafNodes */
32 end
33 end
34 paths.add(path)
35 end
36 return paths
37 end

API Specification Generation

Algorithm 4 presents the steps involved in generating API specification from the

API graph. Our goal in specification inference is to make the specification precise

in terms of the number of path items for each API endpoint. An ideal specification

130

should have exactly one path item describing an API endpoint; URI templates with

path parameters make it possible to do so.

The algorithm first merges leaf nodes in the API graph (line 2). The func-

tion MergeLeafNodes (lines 15–23) performs response comparison to determine

whether two nodes with different names belong to the same API endpoint. In ad-

dition, the algorithm makes use of the graph structure by getting paths that reach

the same endpoint node in the API graph (lines 24–37). Finally, after computing a

list of URIs that belong to similar endpoint nodes in the API graph, the technique

performs a simple path-index-based match per URI segment to extract a template

(lines 5–11).

For example, in Figure 5.4a, for the leaf node info, GetGraphPaths returns

two graph paths for URIs /users/user1/info and /users/user2/info, which

the technique considers equivalent and extracts the template /users/{user}/info

with path parameter {user}.

For the example in Figure 5.4b, the graph paths for URIs /users/user1 and

/users/user2 end at different segments. However, MergeLeafNodes performs

response comparison to determine that these segments are equivalent and sets a

variable to represent the path parameter (line 19 of Algorithm 4). Then,

GetGraphPaths uses that variable and returns the string /users/{user} for both

URIs. Finally, that returned string is used as the template with path parameter

{user}. We use variable name user here for readability; our implementation

creates variable names such as var0.

API Graph Expansion via Probing

The API graph created from the set of API calls seen during UI navigation is limited

by the completeness of UI tests, which can affect the precision and completeness

of the inferred API specification. To address this, APICARV expands the initial

API graph via systematic API probing.

The technique creates four types of probes: intermediate, bipartite, response,

and operation. Intermediate and bipartite probes are built via API graph analysis,

response probes are based on HTTP response analysis, and operation probes aim

to discover unseen operations for known API endpoints. After building probes,

131

API Graph
/

articles

2user2

users

user1

follow comments

tags

info

Bipartite Graph built using a
subset of nodes

user2

user1

follow

info

Figure 5.5: Bipartite analysis for API probe generation.

the technique sends them to the server using a scheduling algorithm that avoids

data dependencies. The successful probes (i.e., probes with response codes other

than 4xx or 5xx) are used for enhancing the API graph and augmenting the API

test suite. InferSpec uses the expanded API graph to generate a potentially more

accurate API specification.

Intermediate probes These probes are created for API graph nodes that do not

have an associated server response (i.e. ν.e is false). For example, in Figure 5.4b,

the probes /users and /users/user1 are intermediate probes built for the nodes

users and user1 that do not have an associated response. In this case, the two

endpoints are indeed valid. As a result, InferSpec adds a new path item /users

and computes path variable user for the existing path /users/user2, which it

replaces with the template /users/{user}.

Bipartite probes These probes are generated by building a bipartite graph from

join nodes (i.e., nodes that have more than one predecessor) in the API graph. To

illustrate, consider the example in Figure 5.5, where join node info has two pre-

decessors (user1 and user2). For this node, the technique constructs the bipartite

graph shown in the figure: the left part of the graph contains all predecessors of

the join node and the right part contains all successors of nodes in the left part.

The technique then computes missing edges that would make the bipartite graph

complete, i.e., each node on the left is connected to each node on the right. In this

132

example, one missing edge makes the bipartite graph complete. From this analy-

sis, probe /users/user2/follow is generated. As shown in Figure 5.4c, this new

probe lets the technique infer the new path variable user and convert concrete

resource path /users/user1/follow to path template /users/{user}/follow,

thereby improving the specification.

Response probes Response probes are generated by analyzing the server

responses for existing API calls. For each response object, the technique builds

probes from keys and values extracted from the response. Suppose the response

for GET /tags is [{ id: 1, name: tag1, author: user1}, { id: 2,

name: tag2, author: user1} ..]. Using this response, we build probes

such as /tags/1, /tags/id, /tags/tag2, /tags/author. As shown

in Figure 5.4d, by analyzing the articles object, we build probes

/articles/1/comments and /articles/1, which result in inference of path

templates /articles/{article} and /articles/{article}/comments.

Similarly, response analysis of tags object helps us infer /tags/{tag}.

Operation probes Operation probes are generated by analyzing API calls based

on coverage of HTTP methods per known API endpoint. We consider seven HTTP

operations—GET, POST, PUT, PATCH, OPTIONS, HEAD, and DELETE—in our anal-

ysis. For example, if the existing set of API calls contains GET /tags/1 and PATCH

/tags/1, we generate five probes for the endpoint, each covering one of the re-

maining HTTP operations (e.g., DELETE /tags/1).

Probe Scheduling HTTP requests can cause server-side state updates and, in gen-

eral, the server response for a request can vary based on other requests. Moreover,

the resources corresponding to a URI could be dynamic and only available in cer-

tain server-side states. Therefore, API probing should be performed at appropriate

server states; our technique achieves this via probe scheduling, based on API graph

analysis.

For each probe, we first check if the URI has a corresponding endpoint node in

the graph. Consider the example in Figure 5.6. Node user1, which is the endpoint

133

/

articles

2user2

users

user1

follow comments

tags

info

checkpoint

get - /users/user1/info
get - /users/user2/info
post - /users/user1/follow
get - /users/user2
get - /tags
post - /articles
get - /articles/2
get - /articles/2/comments

Original API list

get - /users/user1Probes get - /tags/1

Final List to execute

No Graph Vertex

get - /users/user1/info
get - /users/user1
get - /users/user2/info
get - /tags/1
post - /users/user1/follow
get - /tags/1
get - /users/user2
get - /tags
post - /articles
get - /tags/1
get - /articles/2
get - /articles/2/comments

Figure 5.6: Example for illustrating probe scheduling.

node for URI /users/user1, already exists in the graph, whereas the correspond-

ing node for /tags/1 does not exist. If the endpoint node for a probe exists, we

schedule the probe immediately before the last request in the original list whose

URI includes the segment/node. If the endpoint node does not exist, we schedule

the probe after each checkpoint request. A checkpoint request is an HTTP request

that can change the server-side state. We define two types of checkpoints: cookie-

based and operation-based. Cookie-based checkpoints are the HTTP requests for

which the server responds with a set-cookie field. Operation-based checkpoints

correspond to HTTP requests capable of modifying resources, i.e., HTTP meth-

ods PUT, POST, DELETE, and PATCH. In Figure 5.6, the two POST requests are

checkpoint requests. As the final list in Figure 5.6 shows, GET /users/user1

is scheduled only once, immediately after the node is discovered in the graph,

whereas GET /tags/1 is scheduled three times (corresponding to three potential

server-side states), once before any checkpoint and once each after the two check-

points in the original list. After the probes are executed, we keep only one instance

of a successful probe in cases where multiple instances succeed.

5.4 Implementation
We implemented our technique in a tool called APICARV. We use Crawljax [96]

to generate [172] UI test cases automatically. The API recorder module uses

the Chrome Devtools Protocol [57] along with Selenium [134] to instrument the

134

Table 5.1: Web applications used in the evaluation.

Application Framework # API Endpoints # Operations LOC

booker Spring-boot, ReactJS 15 24 8K
ecomm Spring-boot 21 22 6K
jawa Spring-boot, AngularJS 5 8 20K
medical Spring-boot, VueJS 20 28 5K
parabank Spring-mvc, AngularJS 27 27 60K
petclinic Spring-boot, AngularJS 17 36 39K
realworld Express, NextJS 12 19 12K

Total 117 164 150K

browser during UI test execution to record API calls. Our implementation and

experimental dataset are publicly available in a replication package [171].

5.5 Empirical Evaluation
We investigated the following research questions in the evaluation of APICARV.

RQ1: How do carved API tests compare with UI tests in terms of code coverage

and execution efficiency?

RQ2: How effective is APICARV in generating OpenAPI specifications?

RQ3: Do carved API tests improve the coverage achieved by automatically gen-

erated API test suites?

5.5.1 Experiment Setup

We performed the evaluation on seven open-source web applications; Table 5.1

lists the applications and their characteristics. All of the applications implement

RESTful APIs for their services and have OpenAPI specifications available, which

serve as ground truth for measuring the accuracy of the inferred API specifications.

135

Table 5.2: Statistics about different analysis stages in APICARV runs on the subject applications.

API Filtering Probing
Generated Test Suites

Carver Carver + Prober

Recorded Filtered Generated Executed Succeeded Checkpoints Paths total Paths success Requests Time (s) Paths total Paths success Requests Time (s)

booker 3610 613 529 85295 57 203 14 10 443 21 24 20 500 21
ecomm 7838 1187 440 4906 4 18 61 60 1175 21 61 60 1179 15
jawa 1568 198 60 279 13 7 9 4 110 6 18 13 123 6
medical 315 122 1277 39309 17 32 24 23 117 15 26 25 134 17
parabank 13072 574 694 43833 26 68 25 23 572 125 29 27 598 124
petclinic 1536 294 1399 5144 102 42 20 20 290 5 50 50 392 7
realworld 1471 398 7510 72259 225 9 62 36 365 79 116 91 590 103

Total 29410 3386 11909 251025 444 379 215 176 3072 273 324 286 3516 294

136

For UI test generation, we configured Crawljax to run for 30 minutes. We

also created 14 manual tests for three subjects (booker, medical, ecomm), which

required dedicated action sequences and input data. Thus, our evaluation uses

automatically generated and developer-written UI test cases.

For investigating RQ3, we used two popular automated test generators for

REST APIs—EvoMaster [51] and Schemathesis [131]. EvoMaster can be used in

white-box and black-box modes; in the white-box mode, it is applicable to REST

APIs implemented in the Java language. For our study, we used EvoMaster in

its black-box mode so that it can be applied to non-Java API implementations in

our subjects. A recent empirical study [70] showed these two tools to be the top-

performing tools, in terms of code coverage achieved, among the black-box testing

tools for REST APIs. We configured EvoMaster to run for one hour; for Schemath-

esis, we used its default configuration settings. We ran each tool 10 times to ac-

count for randomness and report coverage data averaged over the 10 runs. To mea-

sure code coverage, we used JaCoCo [66] for Java-based APIs and Istanbul [11]

for JavaScript-based APIs.

5.5.2 Quantitative Analysis of APICARV Stages

Before discussing our results on the research questions, we present empirical data

on different stages of APICARV and provide a quantitative analysis of the stages.

Table 5.2 presents data about the filtering, probing, and test-generation stages.

Columns 2–3 of the table show the number of API calls available after record-

ing and filtering, and highlight the importance of filtering: i.e., a large proportion

of the raw API calls recorded get filtered out. These calls basically retrieve re-

sources related to UI rendering in the browser and can be ignored for testing the

functionality of server-side APIs. On average, over 88% of the raw API calls be-

long to the category of irrelevant calls. The proportion of such calls ranges from

over 72% (for realworld) to over 95% (for parabank). Thus, API filtering is an

important component of APICARV; moreover, as discussed in Section 5.3.1, the

filtering component can be configured to be more strict (removing more of the raw

API calls) or less stringent (removing fewer calls).

Columns 4–7 present information about the probing stage: probes generated,

137

C
ov

er
ag

e
(%

)

0

20

40

60

80
bo

ok
er

ec
om

m

ja
w

a

m
ed

ic
al

pa
ra

ba
nk

pe
tc

lin
ic

re
al

w
or

ld

av
er

ag
e

UI branch API branch
UI instruction API instruction

(a) Code coverage
E

xe
cu

tio
n

Ti
m

e
(m

in
s)

0

2

4

6

8

10

12

bo
ok

er

ec
om

m

ja
w

a

m
ed

ic
al

pa
ra

ba
nk

pe
tc

lin
ic

re
al

w
or

ld

A
ve

ra
ge

UI Test API Test

(b) Execution time
Figure 5.7: Coverage rates and execution times of UI tests and carved API

tests.

probes executed, and checkpoints in the filtered API list. On average, the number of

probes generated is over three times the number of filtered API calls, and the num-

ber of probes executed is 21 times the number of generated probes. Recall from the

discussion of probe scheduling in Section 5.3.2 that some probes are scheduled for

multiple executions based on occurrences of checkpoints in the initial API list. The

number of generated probes varies considerably, ranging from 0.3 times the initial

API calls (for jawa) to almost 19 times the initial API calls (for realworld). A

similar large variation can also be seen in the number of probes executed. Finally,

444 probes were successful and are added to API test suite generated at the end of

probing.

Columns 8–15 of Table 5.2 present data about test generation, broken down

by tests created during carving and probing. It can be seen that the total number

of successful paths, which are the number of valid resource paths discovered, in-

creases from 176 in the Carver test suite to 286 in the Prober test suite. The Prober

is, thus, able to discover 110 additional valid resource paths across the applications.

These 110 path invocations come at the cost of only 21 seconds. In other words,

the Prober test suite is able to successfully exercise 62.5% more paths with only

7.6% increase in test-execution time.

138

5.5.3 RQ1: Coverage Rates and Execution Efficiency of Tests

Figure 5.7a presents coverage rates for UI tests and carved API tests. As the data

illustrate, the coverage is identical for all applications, except ecomm, for which

instruction and branch coverage of API test cases are marginally lower (by 1%

and 2% respectively). We suspect that this difference may have been due to API

filtering. On average, carved API test suites covered 18.1% branches and 42.7%

instructions, which is 0.2% less than the coverage achieved by the UI test suites.

Thus, overall, the carved API tests perform very well in matching the coverage

rates of UI test cases.

In terms of execution efficiency, however, there is a big difference between the

two types of test cases, as Figure 5.7b shows. On average, the UI test suites took

seven minutes to run, whereas the API test suites ran in about 0.6 minutes only—

more than 10x improvement in execution efficiency. The biggest improvement

occurs for petclinic, for which the UI test suite took 150 times longer to run

than the API test suite. Even with the smallest improvement, which occurs for

parabank, the API tests executed over 3x faster than the UI tests (2.1 minutes

versus 7.1 minutes, respectively).

The carved API tests match the coverage achieved by UI tests while executing

significantly (10x) faster than UI tests. Thus, carved API tests can be employed

for improving test execution efficiency, without incurring loss in coverage of

server-side code.

5.5.4 RQ2: Accuracy of Inferred OpenAPI Specification

Goals and Measures. To measure the effectiveness of APICARV in inferring API

specifications, we compute precision, recall, and F1 scores for the generated Ope-

nAPI specification (Sgen) against the existing OpenAPI specification, considered

the ground truth (Sgt), for each subject. We compute these scores for resource paths

and operations (HTTP methods) defined on resource paths, and for the specifica-

tion generated from the API graphs computed after carving and probing. Precision

and recall are computed in the usual way, based on true positives, false positives,

and false negatives. A path/operation is considered true positive if it occurs in both

139

Table 5.3: Precision, recall, and F1 scores achieved for API specification inference.

Path Operation

Tool Pr Re F1 Pr Re F1 Pr* F1*

Carver 1.00 0.49 0.32 0.85 0.46 0.28 1.00 0.31
Carver+Prober 0.98 0.56 0.35 0.48 0.54 0.25 0.95 0.34

Sgen and Sgt , false positive if it occurs in Sgen but not in Sgt , and false negative if it

occurs in Sgt but not in Sgen. F1 score is the harmonic mean of precision and recall.

In addition to these metrics, we measure duplication factor for Sgen. A duplication

occurs when multiple paths/operations in Sgen correspond to the one path/operation

in Sgt . We map paths in Sgen to paths in Sgt , and compute duplication factor as (#

mapped paths in Sgt / # mapped paths in Sgen). The computed value ranges from

0 to 1, with higher values indicating less duplication (the value 1 means there is

no repetition of API endpoints in Sgen). The presence of duplication causes Sgen to

contain redundant paths/operations that can be combined.

Results and Analysis. Table 5.3 presents the precision, recall, and F1 scores

for specification inference. In terms of resource paths, APICARV achieves 100%

precision for specifications created after carving and 98% precision after probing

(Column 2). The recall after the carving phase is 49%, which the probing phase

improves to 56%—a gain of 14% (Column 3). The probing phase is intended to

address incompleteness in the API calls observed during UI navigation; the re-

sult shows that it achieves that to some degree and with only a small reduction

in precision. The overall recall at 56% is somewhat low, which is a consequence

of the incompleteness inherent in dynamic analysis. This could be addressed via

improvements in crawling or providing higher coverage UI test suites as input to

APICARV. This concern is orthogonal to APICARV’s core specification-inference

and test-carving techniques.

In terms of operations, the results for recall (Column 6) after the carving phase

is 46%, which the probing phase improves to 54%—a gain of 17%. The preci-

sion value for operations is high (85%) after carving, but there is a significant drop

140

to 48% after probing (Column 5). Upon closer inspection, we found that this is

caused by operation probes, specifically the probes with HTTP methods OPTIONS

and HEAD; these requests are not handled correctly in any of the subjects. Ideally,

an OPTIONS request should provide available operations for an API endpoint and

the corresponding specification for the endpoint should contain OPTIONS as an op-

eration. In all of our subjects, while the server returns a success status (200 code)

for an OPTIONS request, the corresponding operation is not documented in the spec-

ification. We consider this to be a specification inconsistency with respect to appli-

cation behavior; on ignoring this inconsistency, APICARV achieves 95% precision

for operations as well, shown as Pr* in Table 5.3 (Column 8).

APICARV achieves high precision in inferring resource paths and operations.

The probing phase of APICARV increases the recall and F1 scores, while not

causing a significant reduction in precision.

A manual analysis revealed that the path and operation precision drops from 1.0

to 0.98 and 0.95 because of one API endpoint found through probing in realworld.

We verified that the resource path is indeed valid and provides a health-check for

the service despite being absent in the specification, a potential inconsistency. Ta-

ble 5.4 shows the operation inconsistencies that we found per subject. The incon-

sistencies exposed by the carver are particularly interesting because these OPTIONS

and HEAD requests are actually being used by the client—the application UI layer

running in the browser—to communicate with the server. Recall that the carver

uses only the requests captured during UI navigation. For example, the UI client of

the ecomm application uses the OPTIONS operation on 11 API endpoints for server

communication. These inconsistencies indicate room for potential improvements

in the specifications, in particular, by documenting the OPTIONS HTTP method for

API endpoints.

Columns 4–7 of Table 5.4 show the duplication factor computed for the spec-

ification generated after the carving and probing phases. It can be seen that the

duplication factor does not vary significantly for six of the subjects. Path and op-

eration duplication drops to 0.67 from 0.8 and 0.94, respectively, for petclinic

because of the challenge in determining similarity of responses (Algorithm 4 lines

141

Table 5.4: Endpoints inferred, path/operation duplication found, and operation in-
consistencies detected.

Endpoints Duplication Operation

Inferred Path Operation Inconsistencies

carver car+pro carver car+pro carver car+pro carver car+pro

booker 8 10 0.89 0.91 0.92 0.94 0 21
ecomm 13 13 0.81 0.81 0.82 0.82 11 14
jawa 2 2 1.00 1.00 1.00 1.00 0 2
medical 15 16 0.88 0.89 0.89 0.90 9 17
parabank 9 9 1.00 1.00 1.00 1.00 0 12
petclinic 8 12 0.80 0.67 0.94 0.67 5 18
realworld 4 5 0.57 0.56 0.57 0.56 0 18

Average/Total 59 67 0.85 0.83 0.88 0.84 25 102

booker ecomm jawa medical parabank petclinic average

(a) Instruction coverage
booker ecomm jawa medical parabank petclinic average

(b) Branch coverage

Figure 5.8: Augmentation effectiveness of carved tests: coverage rates of
test suites generated by EvoMaster (em) and Schemathesis (st) before
augmentation (original) and after augmentation with carved tests and
probes.

15–23). Recall that we use tree-based comparison to determine response similar-

ity and, in the case of petclinic, the server provides responses that are structurally

dissimilar based on the back-end data differences.

Endpoints covered (Columns 2–3 of Table 5.4) improves for four of the seven

subjects, with the largest increase of 50% occurring for petclinic. Overall, end-

point coverage increases from 59 to 67, for 14% increase, which is reflected in the

path recall values (Column 3 of Table 5.3) as well.

142

APICARV can detect potential inconsistencies between API implementations

and specifications, and could be leveraged for improving specifications.

5.5.5 RQ3: Augmentation Effectiveness of Carved API Tests

Goals and Measures. With RQ3, we investigate the usefulness of carved API

tests in enhancing the coverage rates achieved by EvoMaster [51] and Schemath-

esis [131]. Specifically, we measure instruction and branch coverage of the test

suites generated by those tools; then, we augment the test suites in two steps, by

adding the carved API tests and the successful probes to the test suites, and mea-

suring coverage gains in each augmentation step.

Results and Analysis. Figure 5.8 presents the results for RQ3. It shows the in-

struction and branch coverage rates for the original API test suites generated by

EvoMaster and Schemathesis and the two augmented test suites. Overall, our aug-

mentation causes coverage increases in most instances, with a few exceptions (e.g.,

there are no instruction coverage gains for jawa with Schemathesis). In terms of

instructions, on average, the coverage of EvoMaster test suite increases from 32%

to 49%, for a coverage gain of 52%; for Schemathesis, coverage increases from

37% to 48%, for a coverage gain of 29%. For branch coverage, augmentation

has a bigger effect because of the low coverage rates of the original test suites.

For EvoMaster, branch coverage gain is 99%, increasing from 11% to 22%. For

Schemathesis, branch coverage gain is 75%, increasing from 12% to 21%. For

both types of coverage, the gains for booker, ecomm, and parabank are substantial.

Moreover, additional coverage from probes, on top of the gains from carved

tests, occurs in several instances. For example, the probes provide a considerable

increase in branch coverage for booker—48% to 53% for EvoMaster and 46% to

51% for Schemathesis.

APICARV can significantly increase coverage achieved by EvoMaster and

Schemathesis and, thus, can effectively complement such tools. The probing

stage of APICARV can provide small additional gains on top of the gains from

API tests carved from UI paths.

143

1 /visits/{visitId}:
2 get:
3 parameters:
4 -name: visitId
5 in: path

1 public ResponseEntity getVisit(Integer visitId) {
2 Visit visit = this.clinicService.findVisitById(visitId);
3 if (visit == null) {
4 /* Covered by ApiCarv, Schemathesis and Evomaster */
5 return new ResponseEntity<>(HttpStatus.NOT_FOUND);
6 }
7 /* Covered by ApiCarv through probing */
8 return new ResponseEntity<>(visitMapper.toVisitDto(visit), ←↩

HttpStatus.OK);
9 }

Figure 5.9: Example of an endpoint and the associated service code (from
petclinic) that requires specific test data.

1 /user/signUp:
2 post:
3 params: {in: body, schema: {"user": string, "pass": string}}
4 responses: {200: {"status": string}}
5
6 /user/signIn:
7 post:
8 params: {in: body, schema: {"user": string, "pass": string}}
9 responses: {200:{"status": string, "token": string}}

10
11 /cart/add:
12 post:
13 params: {name: token, in : query, schema : string}

Figure 5.10: Example (from the ecomm application) of dependencies between
API endpoints.

To understand how carved API test suites can complement API testing tech-

niques, we performed an in-depth analysis of the differences in code coverage

achieved by the testing tools and APICARV. Our analysis revealed two interesting

high-level scenarios where carving API test suites from end-to-end UI test suites

could improve the overall effectiveness of API-level testing of web applications.

First, generating appropriate test data to cover API endpoints is a challenging

aspect of API fuzzing, and carved API test suites can be leveraged to cover cer-

tain endpoints that require specific test data. An example of such a scenario from

petclinic is shown in Figure 5.9 where covering the /visits/visitId endpoint

requires providing a value for visitId that is already present in the application

database. In this instance, APICARV leveraged the analysis of API calls observed

144

during the carving phase (derived from the UI test suite) to find a value of visitId

that covers line 8 of method getVisit() and elicits a successful response from

the service (HttpStatus.OK); EvoMaster and Schemathesis were unable to craft a

request with a valid value for visitId.

Second, some API endpoints can have dependencies on other API endpoints.

Consider the three API endpoints from the ecomm application shown in Figure 5.10.

The endpoint /cart/add requires a query parameter, token, that is generated by

the server in response to a call to the /user/signIn endpoint. But, to invoke

/user/signIn, a user must first be registered via the /user/signUp endpoint. Evo-

Master could invoke /user/signUp successfully, but it could not execute the sub-

sequent operations to sign in and add item to cart; Schemathesis could not cover

any of these operations. In contrast, the API test suite carved from the UI test

suite of ecomm could create a successful POST/cart/add request by satisfying these

dependencies. The API calls in the carved test suite are constructed by the web

application UI, which is developed to adhere to the API specification and valid

API invocation sequences. Thus, such dependencies are inherently followed in

sequences of API calls made along UI paths, and APICARV captures the call se-

quences by navigating those paths. The API testing tools, although they attempt to

discover meaningful or valid API call sequences, could not generate requests that

satisfy the endpoint dependencies in this instance.

Modern web applications are commonly tested in the industry using end-to-

end UI test suites, which are often manually created. It is efficient and convenient

to develop such UI test suites because of the mature UI testing eco-system and

the fact that application business logic is easily translated into a sequence of UI

actions on the web interface. API tests carved from such UI test suites can, there-

fore, contain realistic test data and encapsulate the application business logic in a

sequence of API calls. Given these characteristics, carved test suites could effec-

tively complement the API tests generated by API testing tools, such as EvoMaster

and Schemathesis.

145

5.5.6 Threats to Validity

Our study may suffer external and internal threats to validity. In terms of external

threats, we used seven web applications and two REST API testing tools. Our se-

lection of web applications was constrained to applications that implement REST-

ful services and have OpenAPI specifications available to serve as ground truth;

also, our requirement of measuring code coverage on APIs further constrained the

candidate applications. Future evaluation with more and varied web applications

will help confirm whether our results generalize. Our selection of REST API test-

ing tools was guided by a recent study [70] that showed EvoMaster and Schemath-

esis to be the most effective tools, in terms of coverage achieved, among the studied

black-box testing tools. Another threat is the use of existing OpenAPI specifica-

tions as ground truth. We think this is a reasonable choice for our experiments

and we use them with the expectation that they may have some inconsistencies.

As for internal threats, there may be bugs in APICARV and our data-collection

scripts. We mitigated these threats by implementing automated unit test cases for

APICARV and manually checking random samples of our results. We also make

APICARV and our experiment artifacts available [171] to enable replication of our

results.

5.6 Related Work
To the best of our knowledge, our work is the first to propose carving of API-

level tests from UI-level test executions. Several papers have explored carving of

unit-level tests from system-level executions via code instrumentation (e.g., [50,

67, 165]). Elbaum et al. [50] present a technique for carving unit-level tests from

system tests consisting of Java-based code exercising the application end-to-end.

Other techniques [67] selectively capture and replay events and interactions be-

tween selected program components and the rest of the application, using sim-

plified state representations or they aim [165] at enhancing replay efficiency by

mixing action-based and state-based checkpointing. These approaches highlight

different advantages of carved tests compared to the original tests, such as their

execution efficiency and robustness to program changes. Carved unit tests are

shown [50] to be orders of magnitudes faster than the original executions, while

146

retaining most of their fault-detection capabilities. These benefits also motivate

our work, and our evaluation demonstrates the significantly superior execution ef-

ficiency of carved API tests compared with UI-level tests, with negligible loss in

code coverage.

Dynamic specification mining has mostly focused on mining behavioral mod-

els of a program from its execution traces (e.g., [9, 79, 119]). These models capture

relations between data values and component interactions, to allow for accurate

analysis and verification of the software. More relevant to our work are the ap-

proaches recently suggested for mining OpenAPI specifications. Several works

propose inferring OpenAPI specifications from web API documentation pages.

AutoREST [28] infers API specifications from HTML-based documentation via

selection of web pages that likely contain information relevant to the specification.

It applies a set of rules to extract relevant information from the pages and construct

the specification. D2Spec [176] uses machine-learning techniques to extract the

base URL, path templates, and HTTP methods from crawled documentation pages.

A different approach that uses dynamic information is taken in [49], which gener-

ates web API specifications from example request-response pairs. Closest work

to ours is SpyREST [137], which intercepts HTTP requests and applies a simple

heuristic for identifying path parameters, by considering numeric path items and

using regular expression matching. In contrast, our approach infers path param-

eters via API-graph analysis and API probing. We tried to execute SpyREST for

comparison with APICARV’s specification inference, but its service failed to work.

5.7 Conclusion and Future Work
We presented APICARV, a first-of-its-kind technique and tool for carving API tests

and specifications from UI tests. Our evaluation on seven open-source web applica-

tions showed that (1) carved API tests achieve similar coverage as the UI tests that

they are created from, but with significantly less (10x) execution time, (2) API-

CARV achieves high precision in inferring API specifications, and (3) APICARV

can increase the coverage achieved by automated API test generators.

There are several directions in which our approach could be extended in future

work, including development of techniques for improving the inferred specifica-

147

tions to take them closer to developer-written specifications, enhancing the specifi-

cations with information (e.g., example values) that can be leveraged by automated

REST API test generators, and improving the recall of specification inference via

novel crawling techniques aimed at discovering the server-side APIs of a web ap-

plication.

148

Chapter 6

Concluding Remarks

Testing modern web applications in practice requires significant human effort, and

consumes the bulk of the application development resources. Currently, tools and

techniques that enable and support automatic testing practices for other kinds of

software are either unavailable or ineffective for web applications due to their het-

erogeneous nature. While the heterogeneous nature of web ecosystem has forced

practitioners to rely on end-to-end UI testing, performing this task automatically

has remained an unsolved challenge over the years due to the presence of near-

duplicate web pages which are a result of highly dynamic UI. On one hand, a

highly interact-able and dynamic UI enables greater web application functional-

ity and offers a rich experience to the end users, but on the other-hand makes UI

testing more challenging.

6.1 Contributions
In this dissertation, we introduced novel techniques for automatically testing mod-

ern web applications by relying on the analysis of the user interface, making them

universally applicable to all web applications. The main contributions of this dis-

sertation are as follows.

• An empirical study (Chapter 2) of existing state comparison techniques that

are used for inferring navigational models of web applications, a key first

step towards automatic UI test generation. We also performed a qualitative

149

analysis of functional near-duplicate web pages in the wild, where we de-

fined three categories of near-duplicate web pages characterized by the func-

tional differences between the web pages being compared. The results of

our empirical analysis showed that existing state comparison techniques are

ineffective in detecting near-duplicate web pages and infer sub-optimal nav-

igational models undermining dependent downstream tasks such as model-

based test generation.

• A novel technique called FRAGGEN to automatically generate UI test suites

for modern web applications (Chapter 3). FRAGGEN introduces a novel

state abstraction for web pages based on page fragmentation and utilizes fine-

grained fragment analysis to diversify state exploration and generate resilient

test oracles. Our evaluation on eight open-source web apps showed that

FRAGGEN in comparison to existing techniques detects near-duplicate web

pages much more effectively, infers navigational models which cover greater

web application functionality, and generates resilient UI test suites that are

suitable for regression testing.

• A mutation analysis framework called MAEWU which is universally appli-

cable for any web application (Chapter 4) . MAEWU relies only on the anal-

ysis of the application UI, mutates the dynamic DOM in the browser instead

of the source code, and therefore determines UI test suite effectiveness for

any web application irrespective of the front-end and back-end frameworks

it is composed of. Our evaluation on six open-source web apps demonstrate

that MAEWU is effective in generating non-equivalent mutants, able to dy-

namically apply mutations consistently during test execution, and ultimately

effective in assessing Web UI test suites in terms of adequacy and facilitates

test suite quality improvements.

• A first-of-its-kind technique and tool called APICARV that enables API test-

ing universally for all web applications (Chapter 5) . APICARV takes a UI

test suite as input, captures API calls that are executed during UI test exe-

cution, carves API test suites, and also generates API specifications for web

applications. Our evaluation on seven open-source web apps showed that

150

APICARV was able to carve API test suites that replicate server-side cover-

age achieved by the UI test suites in significantly less execution time, gener-

ate precise API specifications, and improve overall code coverage achieved

by existing tools through test augmentation.

6.2 Research Questions Revisited
We introduced four research questions in Chapter 1 and addressed them in the next

four chapters (chapters 2-5). Below, we revisit them and summarize our contribu-

tions.

Research Question 1
What are functional near-duplicates and how to detect them?

Automated web testing techniques infer models from a given web app, which

are used for test generation. From a testing viewpoint, such an inferred model

should contain a minimal set of states that are distinct, yet, adequately cover the

app’s main functionalities. In practice, models inferred automatically are affected

by near-duplicates, i.e., replicas of the same functional webpage differing only by

small insignificant changes. In Chapter 2, we presented the first study of near-

duplicate detection algorithms used for web app model inference. In our study, we

first characterized functional near-duplicates in the wild by classifying a random

sample of 1500 state-pairs, from 493k pairs of webpages obtained from over 6,000

websites, into three categories, namely clone, near-duplicate, and distinct. We then

systematically computed thresholds that define the boundaries of these categories

for each of the ten existing near-duplicate detection techniques we gathered from

three domains, namely, information retrieval, web testing, and computer vision.

We then use these thresholds to evaluate the techniques first on the 1500 state-pairs

from the random sample, and then a further 97,500 state-pairs extracted from nine

open-source web apps. Our study highlights the challenges posed in automatically

inferring a model for any given web app. Our findings show that even with the best

thresholds, no algorithm is able to accurately detect all functional near-duplicates.

We then purpose these near-duplicate detection techniques to infer navigational

models on our nine open-source web apps and found that lack of effectiveness in

151

detecting near-duplicates undermines the overall effectiveness of model inference

for all the existing techniques. As a result, the inferred models were found to

be sub-optimal, which would render model-based testing techniques such as test

generation ineffective.

Research Question 2
How to produce accurate web app models and effective regression test suites?

The findings from the empirical study provided a strong motivation for us to de-

sign a technique that is 1) capable of detecting functional near-duplicates in an

effective manner and 2) does not require threshold selection, which proved to be

a costly manual fine-tuning process during our empirical study described in Chap-

ter 2. We designed a model-based test generation technique, FRAGGEN, described

in Chapter 3, which relies on the insight that a web page is not necessarily a single

functional entity, but a set of functionalities. It is worth noting that all existing

techniques rely on whole-page comparison by treating the web page as a singular

entity. FRAGGEN eliminates the need for thresholds, by employing a novel state

abstraction based on page fragmentation to establish state equivalence. FRAGGEN

also uses fine-grained page fragment analysis to diversify state exploration and

generate reliable test oracles. Our evaluation shows that FRAGGEN outperforms

existing whole-page techniques by detecting more near-duplicates, inferring bet-

ter web app models and generating test suites that are better suited for regression

testing. On a dataset of 86,165 state-pairs, FRAGGEN detected 123% more near-

duplicates on average compared to whole-page techniques. The crawl models in-

ferred by FRAGGEN have 62% more precision and 70% more recall on average.

FRAGGEN also generates reliable regression test suites with test actions that have

nearly 100% success rate on the same version of the web app even if the execu-

tion environment is varied. The test oracles generated by FRAGGEN can detect

98.7% of the visible changes in web pages while being highly robust, making them

suitable for regression testing.

Research Question 3
How to measure the effectiveness of regression test suites?

152

In Chapter 2 and Chapter 3, we focused on the problem of state-equivalence

and model inference. Next, we address the challenge of assessing the adequacy

of UI test suites in Chapter 4. When we studied the existing work related to this

challenge, we found that there exists no reliable and universal method to ascertain

the fault-finding capabilities for UI test suites of web apps. Mutation testing or mu-

tation analysis, a well known fault-based testing technique is considered a reliable

method to determine test adequacy. For other software, where mutation testing is

practiced, existing methods generate mutants by making small changes to source

code imitating programmer errors. However, for web apps, mutation testing based

on source-code is difficult to employ universally because of the heterogeneous na-

ture of web development ecosystem. Existing attempts to enable mutation testing

for web apps employed source-code mutation and therefore were only applicable

to specific frameworks. With the target of developing a universal mutation analysis

framework for web apps, we developed MAEWU, described in Chapter 4, a muta-

tion analysis framework that mutates the dynamic DOM in the browser instead of

source code. As a result, MAEWU can be employed to determine test suite ade-

quacy for any given web app regardless of the back-end and front-end components

it might be composed of. We proposed 16 mutation operators that mutate the be-

havior and appearance of web elements to mimic the nine categories of web app

faults found through an analysis of 250 bug reports. We evaluated our dynamic

mutation analysis framework on six open-source web apps. The results from our

empirical evaluation demonstrated that MAEWU is effective in assessing Web UI

test suites in terms of adequacy and facilitates test suite quality improvements.

Research Question 4
How to enable API testing universally for all web apps?

While the previous research questions focus on automatic UI testing, through

this research question, we aim to tackle the challenge of API testing in Chapter 5.

API testing can play an important role, in-between unit-level and UI-level testing

for modern web applications which make extensive use of API calls to update the

UI state in response to user events or server-side changes. Existing API testing

tools require API specifications (e.g., OpenAPI), which often may not be avail-

153

able or, when available, be inconsistent with the API implementation, thus limiting

the applicability of automated API testing to web applications. In Chapter 5 we

present an approach that leverages UI testing to enable API-level testing for web

applications. Our technique navigates the web application under test and automat-

ically generates an API-level test suite, along with an OpenAPI specification that

describes the application’s server-side APIs (for REST-based web applications).

A key element of our solution is a dynamic approach for inferring API endpoints

with path parameters via UI navigation and directed API probing. We evaluated

the technique for its accuracy in inferring API specifications and the effectiveness

of the “carved” API tests. Our results on seven open-source web applications show

that the technique achieves 98% precision and 56% recall in inferring endpoints.

The carved API tests, when added to test suites generated by two automated REST

API testing tools, increase statement coverage by 24% and 29%, and branch cov-

erage by 75% and 77%, on average. The main benefits of our technique are: (1) it

enables API-level testing of web applications in cases where existing API testing

tools are inapplicable and (2) it creates API-level test suites that cover server-side

code efficiently, while exercising APIs as they would be invoked from an applica-

tion’s web UI, and that can augment existing API test suites.

6.3 Reflections and Future Directions
In this thesis, we advanced the research geared towards automatic UI test gener-

ation for modern web apps, specifically addressing the challenges in the effective

detection of near-duplicates and the generation of optimal navigational models us-

ing state exploration. We also took the first steps towards enabling mutation anal-

ysis and API testing universally for all web apps regardless of the back-end and

front-end frameworks they are developed upon. However, much work remains to

be done in order to make fully automatic web application testing effective, efficient,

and practicable.

State comparison. While our fragment-based state comparison technique com-

fortably outperforms existing techniques, further work is needed in order to be

able to detect functional near-duplicates with 100% accuracy. Specifically, we use

the dynamic DOM tree and visual analysis of the captured screenshot as a proxy for

154

functional equivalency. However, in practice, determining functional equivalence

of web pages requires a certain amount of domain knowledge of the web applica-

tion and semantic understanding of the presented content in the web page, which

human testers typically rely upon. Natural language processing (NLP) and deep

learning (DL) provide a suitable avenue to explore the applicability of page seman-

tics in determining the functional similarity of web pages, a relatively unexplored

area of web testing. In this thesis and most of the existing research, so far, state

comparison for functional testing of web applications has been viewed as a singu-

lar challenge that can be addressed with a single solution. However, there might

be benefits in viewing tasks such as model inference and automatic test oracles as

separate but related concerns that require different approaches. For example, test

oracles are required to detect state changes that could be application bugs while

state abstraction used during model inference is only concerned with establishing

equivalence for the sake of mapping application functionality. In Chapter 3, we

do this separation to an extent by introducing memoization of dynamic fragments

which help us relate application changes to bugs with varying degrees of sever-

ity. However, we believe this problem warrants further research and employing

deep learning to target specific scenarios such as regression testing would prove

beneficial. In addition, our research has so far focused on functional changes that

always have a corresponding change in the DOM. However, there are certain web

elements like canvas elements that may contain visual changes but have no corre-

sponding effect on the DOM. While existing research on testing canvas elements

has remained separate from broader functional testing, there might be a benefit in

incorporating such elements as a part of the state equivalence for model inference

and test generation.

Mutation analysis. In our mutation analysis framework, we use dynamic mutation

of DOM in the browser in order to apply mutations to the web application. As we

show in Chapter 4, our technique was able to generate mutants that imitate real-

world bugs. However, while mutation dynamic DOM would ultimately represent

all changes that could occur due to application faults in the UI, whether developer-

introduced bugs can cause such UI changes in specific web applications is un-

known. Given the resource-intensive nature of mutation analysis, in MAEWU, we

took first steps towards assigning importance to possible mutants in order to make

155

mutation analysis efficient. However, future work should look towards improving

mutant prioritization and semantic similarities between mutants from a functional

perspective in order to make mutation analysis a productive endeavor in improv-

ing test suite quality. For example, back-end instrumentation to determine if two

web page mutants could be similar because they arise out of similar back-end code

changes could help diversify functionality assessed through mutation analysis.

API Testing of web applications. In our API carving work, as described in Chap-

ter 5, we utilize existing UI test suites to generate API test suites and infer API

specifications. The core observation that led to this project is the fact that end-to-

end UI testing is often considered the de-facto method to validate web application

functionality and is often part of acceptance testing for web applications. In the

current form, APICARV only focuses on enabling API testing using existing UI

test suites. Our experimental set-up in fact utilizes FRAGGEN to automatically

crawl the web application to enable API testing. However, usage of automatic UI

testing falls short and ends up only covering 50% of the available end-points in

the web application. An interesting idea would be to use API coverage as a metric

to improve crawling. Associating API end-points with UI actions can also lead to

interesting possibilities related to web page semantics. In a way, API end-points

represent back-end functionality and equivalence of UI elements or actions could

be established through equivalence of API calls triggered by them. However, a

single UI action can lead to several API calls and the challenge would be to form

a semantic representation for the UI action through further analysis of the API

calls and corresponding server responses. Further, our technique can be adapted to

other platforms like mobile and desktop applications that have similar client-server

architectures. It might be particularly interesting to adopt a similar approach in

native mobile applications (especially android), where researchers have developed

automatic UI testing techniques [87, 128, 148] that are able to achieve a signifi-

cantly high code coverage and therefore likely to exercise almost all API endpoints

accessible through the UI.

156

Bibliography

[1] Document Object Model (DOM).
https://en.wikipedia.org/wiki/Document Object Model. → pages 3, 51, 53

[2] The average web page . https://www.advancedwebranking.com/html/. →
page 102

[3] Stratified Random Classifier. https://scikit-learn.org/stable/modules/
generated/sklearn.dummy.DummyClassifier.html. Package: scikit-learn.
→ page 27

[4] HTTP Archive. https://httparchive.org/reports/page-weight. → page 102

[5] HTML Living Standard . https://html.spec.whatwg.org/. → page 95

[6] S. Afroz and R. Greenstadt. Phishzoo: Detecting phishing websites by
looking at them. In 2011 IEEE Fifth International Conference on Semantic
Computing, pages 368–375, Sep. 2011. → pages 9, 16

[7] E. Alegroth, Z. Gao, R. Oliveira, and A. Memon. Conceptualization and
evaluation of component-based testing unified with visual gui testing: An
empirical study. In 2015 IEEE 8th International Conference on Software
Testing, Verification and Validation, ICST 2015, pages 1–10, 2015. →
pages 79, 114

[8] D. Amalfitano, A. R. Fasolino, and P. Tramontana. A gui crawling-based
technique for android mobile application testing. In 2011 IEEE Fourth
International Conference on Software Testing, Verification and Validation
Workshops, pages 252–261, March 2011. → page 39

[9] G. Ammons, R. Bodı́k, and J. R. Larus. Mining specifications. POPL 2002,
pages 4–16. ACM, 2002. → page 147

157

https://en.wikipedia.org/wiki/Document_Object_Model
https://www.advancedwebranking.com/html/
https://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyClassifier.html
https://httparchive.org/reports/page-weight
https://html.spec.whatwg.org/

[10] and A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality
assessment: from error visibility to structural similarity. IEEE Transactions
on Image Processing, 13(4):600–612, April 2004. ISSN 1057-7149. →
pages 14, 16, 49

[11] Apache. https://istanbul.js.org/. https://istanbul.js.org/, 2022. Accessed:
2022-09-01. → page 137

[12] APIBlueprint. API Blueprint, 2022. URL https://apiblueprint.org/.
Accessed: Sep 1, 2022. → page 117

[13] app1. Angular version of the Spring PetClinic web application.
https://github.com/spring-petclinic/spring-petclinic-angular, 2021. → pages
21, 64

[14] app7. PHP Password Manager. https://github.com/pklink/ppma, 2021. →
pages 21, 64

[15] app9. Mantis Bug Tracker. https://github.com/mantisbt/mantisbt, 2018. →
pages 21, 64

[16] A. Arcuri. Restful api automated test case generation with evomaster. ACM
Transactions on Software Engineering and Methodology (TOSEM), 28(1):
1–37, 2019. → pages 118, 119, 120, 122

[17] V. Atlidakis, P. Godefroid, and M. Polishchuk. Restler: Stateful rest api
fuzzing. In 2019 IEEE/ACM 41st International Conference on Software
Engineering, ICSE 2019, pages 748–758, Montreal, QC, Canada, 2019.
IEEE. → pages 118, 119, 122

[18] Y.-M. Baek and D.-H. Bae. Automated model-based android gui testing
using multi-level gui comparison criteria. In Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering,
ASE 2016, page 238?249, New York, NY, USA, 2016. Association for
Computing Machinery. ISBN 9781450338455. → page 39

[19] M. Bajammal and A. Mesbah. Web canvas testing through visual inference.
In 2018 IEEE 11th International Conference on Software Testing,
Verification and Validation, ICST 2018, pages 193–203, 2018. → page 84

[20] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo. The oracle
problem in software testing: A survey. IEEE Transactions on Software
Engineering (TSE), 41(5):507–525, 2015. → page 60

158

https://istanbul.js.org/
https://apiblueprint.org/
https://github.com/spring-petclinic/spring-petclinic-angular
https://github.com/pklink/ppma
https://github.com/mantisbt/mantisbt

[21] M. Biagiola, F. Ricca, and P. Tonella. Search based path and input data
generation for web application testing. pages 18–32, 08 2017. ISBN
978-3-319-66298-5. → page 83

[22] M. Biagiola, A. Stocco, A. Mesbah, F. Ricca, and P. Tonella. Web test
dependency detection. In Proceedings of 27th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2019, page 12 pages. ACM, 2019. →
pages 21, 38, 64, 104

[23] M. Biagiola, A. Stocco, F. Ricca, and P. Tonella. Diversity-based web test
generation. In Proceedings of 27th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2019, page 12 pages. ACM, 2019. → pages
2, 5, 21, 38, 41, 64, 83

[24] L. Blanco, N. Dalvi, and A. Machanavajjhala. Highly efficient algorithms
for structural clustering of large websites. In Proceedings of the 20th
International Conference on World Wide Web, WWW 2011, pages
437–446. ACM, 2011. → page 9

[25] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig. Syntactic
clustering of the web. Comput. Netw. ISDN Syst., 29(8-13):1157–1166,
Sept. 1997. → page 38

[26] D. Cai, S. Yu, J.-R. Wen, and W.-Y. Ma. Vips: a vision-based page
segmentation algorithm. Technical Report MSR-TR-2003-79, November
2003. URL https://www.microsoft.com/en-us/research/publication/
vips-a-vision-based-page-segmentation-algorithm/. → pages
50, 51, 62, 102

[27] F. Calefato, F. Lanubile, and T. Mallardo. Function clone detection in web
applications: A semiautomated approach. J. Web Eng., 3(1):3–21, May
2004. → pages 38, 39

[28] H. Cao, J. Falleri, and X. Blanc. Automated generation of REST API
specification from plain HTML documentation. In ICSOC, volume 10601
of Lecture Notes in Computer Science, pages 453–461. Springer, 2017. →
page 147

[29] M. S. Charikar. Similarity estimation techniques from rounding algorithms.
In Proceedings of the Thiry-fourth Annual ACM Symposium on Theory of

159

https://www.microsoft.com/en-us/research/publication/vips-a-vision-based-page-segmentation-algorithm/
https://www.microsoft.com/en-us/research/publication/vips-a-vision-based-page-segmentation-algorithm/

Computing, STOC 2002, pages 380–388, New York, NY, USA, 2002.
ACM. ISBN 1-58113-495-9. → pages 13, 14, 15, 49

[30] T.-C. Chen, S. Dick, and J. Miller. Detecting visually similar web pages:
Application to phishing detection. ACM Trans. Internet Technol., 10(2):
5:1–5:38, June 2010. ISSN 1533-5399. → pages 9, 16

[31] S. R. Choudhary, D. Zhao, H. Versee, and A. Orso. Water: Web application
test repair. In Proceedings of 1st International Workshop on End-to-End
Test Script Engineering, ETSE 2011, pages 24–29. ACM, 2011. → page 2

[32] S. R. Choudhary, M. R. Prasad, and A. Orso. CrossCheck: Combining
Crawling and Differencing to Better Detect Cross-browser
Incompatibilities in Web Applications. In Proc. of the 2012 IEEE Fifth
International Conference on Software Testing, Verification and Validation,
ICST 2012, pages 171–180. IEEE, 2012. → pages 49, 84

[33] L. Christophe, R. Stevens, C. D. Roover, and W. D. Meuter. Prevalence and
maintenance of automated functional tests for web applications. In
Proceedings of 30th International Conference on Software Maintenance
and Evolution, ICSME 2014. IEEE, 2014. → pages 2, 41

[34] Claroline. Claroline. Open Source Learning Management System.
https://sourceforge.net/projects/claroline/, 2021. → pages 21, 64, 91

[35] D. Corradini, A. Zampieri, M. Pasqua, E. Viglianisi, M. Dallago, and
M. Ceccato. Automated black-box testing of nominal and error scenarios
in restful apis. Software Testing, Verification and Reliability, page e1808,
2022. → page 118

[36] Crater. Crater. https://sourceforge.net/projects/crater.mirror/, 2021. →
page 91

[37] V. Crescenzi, P. Merialdo, and P. Missier. Clustering web pages based on
their structure. Data Knowledge Engineering, 54(3):279–299, Sept. 2005.
→ pages 38, 39

[38] V. Dallmeier, M. Burger, T. Orth, and A. Zeller. Webmate: A tool for
testing web 2.0 applications. In Proceedings of the Workshop on JavaScript
Tools, JSTools 2012, pages 11–15, New York, NY, USA, 2012. Association
for Computing Machinery. ISBN 9781450312745. → page 83

160

https://sourceforge.net/projects/claroline/
https://sourceforge.net/projects/crater.mirror/

[39] X. Dang, X. Yao, D. Gong, and T. Tian. Efficiently generating test data to
kill stubborn mutants by dynamically reducing the search domain. IEEE
Transactions on Reliability, 69(1):334–348, 2020. → pages 106, 107

[40] C. Degott, N. P. Borges Jr., and A. Zeller. Learning User Interface Element
Interactions, pages 296–306. Association for Computing Machinery, New
York, NY, USA, 2019. ISBN 9781450362245. → page 84

[41] L. Deng, N. Mirzaei, P. Ammann, and J. Offutt. Towards mutation analysis
of android apps. In 2015 IEEE Eighth International Conference on
Software Testing, Verification and Validation Workshops, ICSTW 2015,
pages 1–10, 2015. → pages 87, 114

[42] L. Deng, J. Offutt, P. Ammann, and N. Mirzaei. Mutation operators for
testing android apps. Inf. Softw. Technol., 81(C):154–168, Jan. 2017. ISSN
0950-5849. → page 114

[43] M. N. Dennis Fetterly, Mark Manasse. On the evolution of clusters of
near-duplicate web pages. In Journal of Web Engineering, volume 2, pages
228–246. Institute of Electrical and Electronics Engineers, Inc., October
2004. → pages 4, 8, 9, 38, 39

[44] G. A. Di Lucca, M. Di Penta, A. R. Fasolino, and P. Granato. Clone
analysis in the web era: an approach to identify cloned web pages. In
Proceedings of the International Workshop of Empirical Studies on
Software Maintenance - November 2001 - Florence - Italy, pages 107–113,
2001. → pages 4, 8, 9, 39, 49

[45] G. A. Di Lucca, M. D. Penta, and A. R. Fasolino. An approach to identify
duplicated web pages. 2013 IEEE 37th Annual Computer Software and
Applications Conference, 00(undefined):481, 2002. → pages 38, 39

[46] dimeshift. DimeShift: easiest way to track your expenses.
https://github.com/jeka-kiselyov/dimeshift, 2021. → pages 21, 64

[47] K. Dobolyi and W. Weimer. Modeling consumer-perceived web application
fault severities for testing. In Proceedings of the 19th International
Symposium on Software Testing and Analysis, ISSTA 2010, pages 97–106,
New York, NY, USA, 2010. Association for Computing Machinery. ISBN
9781605588230. → pages 106, 113

[48] C. Duda, G. Frey, D. Kossmann, R. Matter, and C. Zhou. Ajax crawl:
Making ajax applications searchable. In Proceedings of the 2009 IEEE

161

https://github.com/jeka-kiselyov/dimeshift

International Conference on Data Engineering, ICDE 2009, pages 78–89.
IEEE, 2009. → pages 4, 8

[49] H. Ed-douibi, J. L. Cánovas Izquierdo, and J. Cabot. Example-driven web
api specification discovery. In A. Anjorin and H. Espinoza, editors,
Modelling Foundations and Applications, pages 267–284. Springer
International Publishing, 2017. → page 147

[50] S. G. Elbaum, H. N. Chin, M. B. Dwyer, and M. Jorde. Carving and
replaying differential unit test cases from system test cases. IEEE
Transactions on Software Engineering (TSE), 35(1):29–45, 2009. → pages
119, 146

[51] evomaster. EvoMaster: A Tool For Automatically Generating
System-Level Test Cases, 2022. URL
https://github.com/EMResearch/EvoMaster. Accessed: Sep 1, 2022. →
pages 120, 137, 143

[52] E. V. Eyk and W. J. V. Leeuwen. Performance of near-duplicate detection
algorithms for crawljax. B.S. Thesis, 2014. → page 39

[53] R. T. Fielding. Architectural styles and the design of network-based
software architectures, volume 7. University of California, Irvine Irvine,
2000. → pages 6, 117, 120

[54] Gérôme Grignon, Manuel Vila. The mother of all demo apps.
https://github.com/gothinkster/realworld, 2022. Accessed: 2022-01-01. →
pages 120, 122

[55] P. Godefroid, B.-Y. Huang, and M. Polishchuk. Intelligent rest api data
fuzzing. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2020, pages 725–736, 2020. → page
118

[56] L. Gonzalez-Hernandez, B. Lindström, J. Offutt, S. F. Andler, P. Potena,
and M. Bohlin. Using mutant stubbornness to create minimal and
prioritized test sets. In 2018 IEEE International Conference on Software
Quality, Reliability and Security, QRS 2018, pages 446–457, 2018. →
page 106

[57] Google. Chrome devtools protocol.
https://chromedevtools.github.io/devtools-protocol/, 2022. Accessed:
2022-01-01. → page 134

162

https://github.com/EMResearch/EvoMaster
https://github.com/gothinkster/realworld
https://chromedevtools.github.io/devtools-protocol/

[58] M. Grechanik, Q. Xie, and C. Fu. Maintaining and evolving GUI-directed
test scripts. In Proceedings of 31st International Conference on Software
Engineering, ICSE 2009, pages 408–418. IEEE, 2009. → pages 2, 41, 122

[59] J. Gregorio, R. Fielding, M. Hadley, M. Nottingham, , and D. Orchard.
URI Template. RFC 6570, 2012. URL
https://www.rfc-editor.org/info/rfc6570. → page 121

[60] Y. Guo and S. Sampath. Web application fault classification - an
exploratory study. In Proceedings of the Second ACM-IEEE International
Symposium on Empirical Software Engineering and Measurement, ESEM
2008, page 303?305, New York, NY, USA, 2008. Association for
Computing Machinery. ISBN 9781595939715. → pages 88, 90

[61] Z. Hatfield-Dodds and D. Dygalo. Deriving semantics-aware fuzzers from
web api schemas, 2021. → pages 118, 119, 122

[62] Z. Hatfield-Dodds and D. Dygalo. Deriving semantics-aware fuzzers from
web api schemas. In 2022 IEEE/ACM 44th International Conference on
Software Engineering: Companion Proceedings, ICSE-companion 2022,
pages 345–346, 2022. → page 120

[63] T. H. Haveliwala, A. Gionis, D. Klein, and P. Indyk. Evaluating strategies
for similarity search on the web. In Proceedings of the 11th International
Conference on World Wide Web, WWW 2002, pages 432–442, New York,
NY, USA, 2002. ACM. ISBN 1-58113-449-5. → pages 4, 9

[64] M. Henzinger. Finding near-duplicate web pages: A large-scale evaluation
of algorithms. In Proceedings of the 29th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR
2006, pages 284–291. ACM, 2006. → pages 4, 8, 9, 15, 28, 38, 42

[65] L. Inozemtseva and R. Holmes. Coverage is not strongly correlated with
test suite effectiveness. In Proceedings of the 36th International
Conference on Software Engineering, ICSE 2014, pages 435–445, New
York, NY, USA, 2014. Association for Computing Machinery. ISBN
9781450327565. → pages 5, 86

[66] JaCoCo. JaCoCo Java Code Coverage Library, 2022. URL
https://www.eclemma.org/jacoco/. Accessed: Sep 1, 2022. → page 137

[67] S. Joshi and A. Orso. SCARPE: A Technique and Tool for Selective
Capture and Replay of Program Executions. In Proceedings of the 23rd

163

https://www.rfc-editor.org/info/rfc6570
https://www.eclemma.org/jacoco/

International Conference on Software Maintenance, ICSM 2007, pages
234–243. IEEE, 2007. → pages 119, 146

[68] S. Karlsson, A. Čaušević, and D. Sundmark. Quickrest: Property-based test
generation of openapi-described restful apis. In 13th International
Conference on Software Testing, Validation and Verification, ICST 2020,
pages 131–141. IEEE, 2020. → page 118

[69] J. Kiesel, L. Meyer, F. Kneist, B. Stein, and M. Potthast. An empirical
comparison of web page segmentation algorithms. In ECIR (2), pages
62–74, 2021. → page 51

[70] M. Kim, Q. Xin, S. Sinha, and A. Orso. Automated test generation for rest
apis: No time to rest yet. In Proceedings of the 31st ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA 2022,
pages 289–301. Association for Computing Machinery, 2022. → pages
137, 146

[71] Koel. Koel. https://sourceforge.net/projects/koel.mirror/, 2021. → page 91

[72] N. Laranjeiro, J. Agnelo, and J. Bernardino. A black box tool for
robustness testing of rest services. IEEE Access, pages 24738–24754,
2021. → page 118

[73] M. Leotta, A. Stocco, F. Ricca, and P. Tonella. Using multi-locators to
increase the robustness of web test cases. In Proceedings of 8th
International Conference on Software Testing, Verification and Validation,
ICST 2015, pages 1–10. IEEE, 2015. → page 42

[74] M. Leotta, A. Stocco, F. Ricca, and P. Tonella. Using multi-locators to
increase the robustness of web test cases. In Proceedings of 8th
International Conference on Software Testing, Verification and Validation,
ICST 2015, pages 1–10. IEEE, 2015. → page 113

[75] V. Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions
and Reversals. Soviet Physics Doklady, 10:707, 1966. → pages 14, 15, 49

[76] C. Leys, C. Ley, O. Klein, P. Bernard, and L. Licata. Detecting outliers: Do
not use standard deviation around the mean, use absolute deviation around
the median. Journal of Experimental Social Psychology, 49(4):764 – 766,
2013. ISSN 0022-1031. → page 26

164

https://sourceforge.net/projects/koel.mirror/

[77] M. Linares-Vásquez, G. Bavota, M. Tufano, K. Moran, M. Di Penta,
C. Vendome, C. Bernal-Cárdenas, and D. Poshyvanyk. Enabling mutation
testing for android apps. In Proceedings of the 2017 11th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2017, pages 233–244,
New York, NY, USA, 2017. Association for Computing Machinery. ISBN
9781450351058. → pages 79, 114

[78] Y. Liu, Y. Li, G. Deng, Y. Liu, R. Wan, R. Wu, D. Ji, S. Xu, and M. Bao.
Morest: Model-based restful api testing with execution feedback. arXiv
preprint arXiv:2204.12148, 2022. → page 118

[79] D. Lorenzoli, L. Mariani, and M. Pezzè. Automatic generation of software
behavioral models. In W. Schäfer, M. B. Dwyer, and V. Gruhn, editors,
Proceedings of the 30th International Conference on Software
Engineering, ICSE 2008, pages 501–510. ACM, 2008. → page 147

[80] D. G. Lowe. Object recognition from local scale-invariant features. In
Proceedings of Seventh IEEE International Conference on Computer
Vision, volume 2, pages 1150–1157, 1999. → pages 14, 16, 49

[81] E. Luna and O. E. Ariss. Edroid: A mutation tool for android apps. In 2018
6th International Conference in Software Engineering Research and
Innovation (CONISOFT), pages 99–108, 2018. → page 115

[82] MacOS Mojave. MacOS Mojave .
https://en.wikipedia.org/wiki/MacOS Mojave, 2020. → page 75

[83] Y. Maezawa, K. Nishiura, H. Washizaki, and S. Honiden. Validating ajax
applications using a delay-based mutation technique. In Proceedings of the
29th ACM/IEEE International Conference on Automated Software
Engineering, ASE 2014, pages 491–502, New York, NY, USA, 2014.
Association for Computing Machinery. ISBN 9781450330138. → page
114

[84] S. Mahajan and W. G. Halfond. Finding HTML Presentation Failures
Using Image Comparison Techniques. In Proc. of the 29th ACM/IEEE
International Conference on Automated Software Engineering, ASE 2014,
pages 91–96. ACM, 2014. → pages 16, 49

[85] S. Mahajan and W. G. J. Halfond. Detection and Localization of HTML
Presentation Failures Using Computer Vision-Based Techniques. In 2015
IEEE 8th International Conference on Software Testing, Verification and
Validation, ICST 2015, pages 1–10, April 2015. → page 49

165

https://en.wikipedia.org/wiki/MacOS_Mojave

[86] G. S. Manku, A. Jain, and A. Das Sarma. Detecting near-duplicates for web
crawling. In Proceedings of the 16th International Conference on World
Wide Web, WWW 2007, pages 141–150. ACM, 2007. → pages 4, 8, 9, 38

[87] K. Mao, M. Harman, and Y. Jia. Sapienz: Multi-objective automated
testing for android applications. In Proceedings of the 25th International
Symposium on Software Testing and Analysis, ISSTA 2016, page 94–105,
New York, NY, USA, 2016. Association for Computing Machinery. ISBN
9781450343909. doi:10.1145/2931037.2931054. URL
https://doi.org/10.1145/2931037.2931054. → page 156

[88] A. Marchetto, F. Ricca, and P. Tonella. Empirical validation of a web fault
taxonomy and its usage for fault seeding. In 2007 9th IEEE International
Workshop on Web Site Evolution, pages 31–38, 2007. → page 90

[89] A. Marchetto, P. Tonella, and F. Ricca. State-based testing of ajax web
applications. In 2008 1st International Conference on Software Testing,
Verification, and Validation, ICST 2008, pages 121–130, 2008. → pages
5, 83

[90] B. Marculescu, M. Zhang, and A. Arcuri. On the faults found in rest apis
by automated test generation. ACM Transactions on Software Engineering
Methodology, 31(3), 2022. → page 118

[91] A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés. Test Coverage Criteria
for RESTful Web APIs. In Proceedings of the 10th ACM SIGSOFT
International Workshop on Automating TEST Case Design, Selection, and
Evaluation, pages 15–21, 2019. → page 118

[92] A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés. Restest: Black-box
constraint-based testing of restful web apis. In International Conference on
Service-Oriented Computing, pages 459–475. Springer, 2020. → pages
118, 119, 122

[93] A. M. Memon and M. L. Soffa. Regression testing of guis. Proceedings of
the 9th European software engineering conference, pages 118–127, 2003.
→ pages 2, 41

[94] A. Mesbah. Advances in Testing JavaScript-based Web Applications,
volume 97 of Advances in Computers, chapter 5, pages 201–235. Elsevier,
2015. → pages 3, 11

166

http://dx.doi.org/10.1145/2931037.2931054
https://doi.org/10.1145/2931037.2931054

[95] A. Mesbah and A. van Deursen. Invariant-based automatic testing of ajax
user interfaces. In Proceedings of the 31st International Conference on
Software Engineering, ICSE 2009, pages 210–220. IEEE, 2009. ISBN
978-1-4244-3453-4. → pages 49, 84

[96] A. Mesbah, A. van Deursen, and S. Lenselink. Crawling ajax-based web
applications through dynamic analysis of user interface state changes.
ACM Transactions on the Web, 6(1):3:1–3:30, 2012. → pages
4, 5, 8, 14, 15, 17, 41, 62, 83, 134

[97] A. Mesbah, A. van Deursen, and D. Roest. Invariant-based automatic
testing of modern web applications. IEEE Transactions on Software
Engineering (TSE), 38(1):35–53, 2012. → pages 2, 5, 41, 42, 60

[98] A. Milani Fard and A. Mesbah. Feedback-directed exploration of web
applications to derive test models. In Proceedings of the International
Symposium on Software Reliability Engineering, ISSRE 2013, pages
278–287. IEEE, 2013. → pages 4, 8, 14, 15, 84

[99] S. Mirshokraie and A. Mesbah. Jsart: JavaScript assertion-based regression
testing. In International Conference on Web Engineering, ICWE 2012,
pages 238–252, 2012. → page 41

[100] S. Mirshokraie, A. Mesbah, and K. Pattabiraman. Guided mutation testing
for javascript web applications. IEEE Transactions on Software
Engineering (TSE), 41(5):429–444, May 2015. ISSN 2326-3881. → pages
79, 84, 103, 104, 114

[101] M. Mirzaaghaei and A. Mesbah. Dom-based test adequacy criteria for web
applications. In Proceedings of the 2014 International Symposium on
Software Testing and Analysis, ISSTA 2014, pages 71–81, New York, NY,
USA, 2014. Association for Computing Machinery. ISBN 9781450326452.
→ page 93

[102] K. Moran, M. Tufano, C. Bernal-Cárdenas, M. Linares-Vásquez,
G. Bavota, C. Vendome, M. Di Penta, and D. Poshyvanyk. Mdroid+: A
mutation testing framework for android. In 2018 IEEE/ACM 40th
International Conference on Software Engineering: Companion
(ICSE-Companion), pages 33–36, 2018. → page 114

[103] mrbs. Meeting Room Booking System. https://mrbs.sourceforge.io/, 2021.
→ pages 21, 91

167

https://mrbs.sourceforge.io/

[104] K. Nishiura, Y. Maezawa, H. Washizaki, and S. Honiden. Mutation
analysis for javascript web applications testing. volume 2013, 01 2013. →
pages 79, 84

[105] K. Nishiura, Y. Maezawa, H. Washizaki, and S. Honiden. Mutation
analysis for javascript web applications testing. volume 2013, 01 2013. →
pages 105, 114

[106] R. A. P. Oliveira, E. Alégroth, Z. Gao, and A. Memon. Definition and
evaluation of mutation operators for gui-level mutation analysis. In 2015
IEEE Eighth International Conference on Software Testing, Verification
and Validation Workshops, ICSTW 2015, pages 1–10, 2015. → page 114

[107] R. A. P. Oliveira, E. Alégroth, Z. Gao, and A. Memon. Definition and
evaluation of mutation operators for gui-level mutation analysis. In 2015
IEEE Eighth International Conference on Software Testing, Verification
and Validation Workshops (ICSTW), ICSTW 2015, pages 1–10, 2015. →
pages 79, 87

[108] J. Oliver, C. Cheng, and Y. Chen. TLSH – A Locality Sensitive Hash. In
2013 Fourth Cybercrime and Trustworthy Computing Workshop, pages
7–13, Nov 2013. → pages 13, 14, 15, 49

[109] Open API Initiative. Openapi specification.
https://spec.openapis.org/oas/latest.html, 2022. Accessed: 2022-01-01. →
pages 117, 120

[110] pagekit. Pagekit: modular and lightweight CMS. .
https://github.com/pagekit/pagekit, 2021. → pages 21, 64

[111] M. Papadakis, D. Shin, S. Yoo, and D.-H. Bae. Are mutation scores
correlated with real fault detection? a large scale empirical study on the
relationship between mutants and real faults. In Proceedings of the 40th
International Conference on Software Engineering, ICSE 2018, pages
537–548, New York, NY, USA, 2018. Association for Computing
Machinery. ISBN 9781450356381. → page 106

[112] M. Pawlik and N. Augsten. Efficient computation of the tree edit distance.
ACM Trans. Database Syst., 40(1):3:1–3:40, Mar. 2015. → pages
14, 15, 49, 64, 102

[113] M. Pawlik and N. Augsten. Tree edit distance: Robust and
memory-efficient. Inf. Syst., 56:157–173, 2016. → pages 53, 62, 129

168

https://spec.openapis.org/oas/latest.html
https://github.com/pagekit/ pagekit

[114] PGWeb. PGWEB. https://sourceforge.net/projects/pgweb.mirror, 2021.
→ page 91

[115] phoenix. Phoenix: Trello tribute done in Elixir, Phoenix Framework, React
and Redux. https://github.com/bigardone/phoenix-trello, 2021. → pages
21, 64

[116] PHP AddressBook. Simple, web-based address & phone book.
http://sourceforge.net/projects/php-addressbook, 2021. Accessed:
2018-10-01. → pages 21, 45, 64, 91

[117] PHP List. PHP List. https://sourceforge.net/projects/phplist/, 2021. →
page 91

[118] T. Popela. Implementace algoritmu pro vizuálnı́ segmentaci www stránek.
Master’s thesis, Brno University of Technology, Faculty of Information
Technology, 2012. URL https://www.fit.vut.cz/study/thesis/14163/. → page
62

[119] M. Pradel, P. Bichsel, and T. R. Gross. A framework for the evaluation of
specification miners based on finite state machines. In ICSM, pages 1–10.
IEEE Computer Society, 2010. → page 147

[120] U. Praphamontripong and J. Offutt. Applying mutation testing to web
applications. In 2010 Third International Conference on Software Testing,
Verification, and Validation Workshops, pages 132–141, April 2010. →
pages 79, 84, 88, 104, 105, 114

[121] U. Praphamontripong, J. Offutt, L. Deng, and J. Gu. An experimental
evaluation of web mutation operators. In 2016 IEEE Ninth International
Conference on Software Testing, Verification and Validation Workshops,
ICSTW 2016, pages 102–111, 2016. → pages 84, 105, 114

[122] L. Ramaswamy, A. Iyengar, L. Liu, and F. Douglis. Automatic detection of
fragments in dynamically generated web pages. In Proceedings of the 13th
International Conference on World Wide Web, WWW 2004, pages
443–454. ACM, 2004. → page 38

[123] raml. RAML, 2022. URL https://raml.org/. Accessed: Sep 1, 2022. →
page 117

[124] Reactive Trader. Reactive Trader.
https://github.com/AdaptiveConsulting/ReactiveTraderCloud/, 2021. →
page 91

169

https://sourceforge.net/projects/pgweb.mirror
 https://github.com/bigardone/phoenix-trello
http://sourceforge.net/projects/php-addressbook
https://sourceforge.net/projects/phplist/
https://www.fit.vut.cz/study/thesis/14163/
https://raml.org/
https://github.com/AdaptiveConsulting/ReactiveTraderCloud/

[125] RedHat Linux 7. RedHat Linux .
https://en.wikipedia.org/wiki/Red Hat Enterprise Linux, 2018. → page 75

[126] F. Ricca and P. Tonella. Analysis and testing of web applications. In
Proceedings of the 23rd International Conference on Software
Engineering, ICSE 2001, pages 25–34. IEEE, 2001. → page 11

[127] D. Roest, A. Mesbah, and A. v. Deursen. Regression testing Ajax
applications: Coping with dynamism. In International Conference on
Software Testing, Verification and Validation, ICSE 2010, 2010. → pages
5, 41, 42

[128] A. Romdhana, A. Merlo, M. Ceccato, and P. Tonella. Deep reinforcement
learning for black-box testing of android apps. ACM Trans. Softw. Eng.
Methodol., 31(4), jul 2022. ISSN 1049-331X. doi:10.1145/3502868. URL
https://doi.org/10.1145/3502868. → page 156

[129] S. Roy Choudhary, M. R. Prasad, and A. Orso. X-PERT: Accurate
Identification of Cross-browser Issues in Web Applications. In Proc. of the
2013 International Conference on Software Engineering, ICSE 2013, pages
702–711. IEEE Press, 2013. → pages 16, 49, 54

[130] S. Sampath. Advances in user-session-based testing of web applications.
Advances in Computers, 86:87–108, 2012. → page 9

[131] schemathesis. schemathesis, 2022. URL
https://github.com/schemathesis/schemathesis. Accessed: Sep 1, 2022.
→ pages 120, 137, 143

[132] M. Schur, A. Roth, and A. Zeller. Mining workflow models from web
applications. IEEE Transactions on Software Engineering (TSE), 41(12):
1184–1201, Dec 2015. → pages 4, 8

[133] S. Segura, J. A. Parejo, J. Troya, and A. Ruiz-Cortés. Metamorphic testing
of restful web apis. IEEE Transactions on Software Engineering (TSE),
pages 1083–1099, 2017. → page 118

[134] Selenium. Selenium web browser automation. https://www.selenium.dev/,
2022. Accessed: 2022-07-01. → pages 11, 134

[135] H. Shahriar and M. Zulkernine. Mutec: Mutation-based testing of cross site
scripting. In Proceedings of the 2009 ICSE Workshop on Software
Engineering for Secure Systems, IWSESS 2009, pages 47–53, USA, 2009.
IEEE Computer Society. ISBN 9781424437252. → pages 88, 104, 114

170

https://en.wikipedia.org/wiki/Red_Hat_Enterprise_Linux
http://dx.doi.org/10.1145/3502868
https://doi.org/10.1145/3502868
https://github.com/schemathesis/schemathesis
https://www.selenium.dev/

[136] J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesian optimization
of machine learning algorithms. In F. Pereira, C. J. C. Burges, L. Bottou,
and K. Q. Weinberger, editors, Advances in Neural Information Processing
Systems 25, pages 2951–2959. Curran Associates, Inc., 2012. → pages
25, 66

[137] S. M. Sohan, C. Anslow, and F. Maurer. Spyrest: Automated restful api
documentation using an http proxy server (n). In 2015 30th IEEE/ACM
International Conference on Automated Software Engineering, ASE 2015,
pages 271–276, 2015. → page 147

[138] M. Sokolova and G. Lapalme. A systematic analysis of performance
measures for classification tasks. Information Processing Management, 45
(4):427 – 437, 2009. ISSN 0306-4573. → page 27

[139] SourceForge. SourceForge. https://sourceforge.net/, 2021. → page 90

[140] springboot. SpringBoot, 2022. URL https://spring.io/projects/spring-boot/.
Accessed: Sep 1, 2022. → page 118

[141] springdoc. springdoc-openapi, 2022. URL https://springdoc.org/.
Accessed: Sep 1, 2022. → page 118

[142] springfox. SpringFox: Automated JSON API documentation for API’s
built with Spring, 2022. URL https://springfox.github.io/springfox/.
Accessed: Sep 1, 2022. → page 118

[143] D. Stallenberg, M. Olsthoorn, and A. Panichella. Improving test case
generation for rest apis through hierarchical clustering. In 2021 36th
IEEE/ACM International Conference on Automated Software Engineering,
ASE 2021, pages 117–128. IEEE, 2021. → page 118

[144] A. Stocco, M. Leotta, F. Ricca, and P. Tonella. Clustering-aided page
object generation for web testing. In Proceedings of 16th International
Conference on Web Engineering, ICWE 2016, pages 132–151. Springer,
2016. → pages 15, 21, 38, 64

[145] A. Stocco, M. Leotta, F. Ricca, and P. Tonella. APOGEN: Automatic Page
Object Generator for Web Testing. Software Quality Journal, 25(3):
1007–1039, Sept. 2017. → pages 21, 64

[146] A. Stocco, R. Yandrapally, and A. Mesbah. Visual web test repair. In
Proceedings of the 2018 26th ACM Joint Meeting on European Software

171

https://sourceforge.net/
https://spring.io/projects/spring-boot/
https://springdoc.org/
https://springfox.github.io/springfox/

Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2018, pages 503–514, New York, NY, USA, 2018.
ACM. ISBN 978-1-4503-5573-5. → pages 2, 16, 176

[147] N. D. Study. Near duplicate study crawls, Sept. 2019. URL
https://doi.org/10.5281/zenodo.3385377. → pages 64, 70

[148] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu, Y. Liu, and
Z. Su. Guided, stochastic model-based gui testing of android apps. In
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2017, page 245–256, New York, NY, USA, 2017.
Association for Computing Machinery. ISBN 9781450351058.
doi:10.1145/3106237.3106298. URL
https://doi.org/10.1145/3106237.3106298. → page 156

[149] Y. Sun, P. Jin, and L. Yue. A framework of a hybrid focused web crawler.
In 2008 Second International Conference on Future Generation
Communication and Networking Symposia, volume 2, pages 50–53, Dec
2008. → page 84

[150] M. J. Swain and D. H. Ballard. Indexing via color histograms. In A. K.
Sood and H. Wechsler, editors, Active Perception and Robot Vision, pages
261–273. Springer Berlin Heidelberg, 1992. → pages 14, 49, 53, 62, 64

[151] S. Thummalapenta, P. Devaki, S. Sinha, S. Chandra, S. Gnanasundaram,
D. D. Nagaraj, S. Kumar, and S. Kumar. Efficient and change-resilient test
automation: An industrial case study. In 2013 35th International
Conference on Software Engineering, ICSE 2013, pages 1002–1011, 2013.
→ page 2

[152] S. Thummalapenta, K. V. Lakshmi, S. Sinha, N. Sinha, and S. Chandra.
Guided test generation for web applications. In 2013 35th International
Conference on Software Engineering, ICSE 2013, pages 162–171, May
2013. → pages 2, 41

[153] tikiwiki. TikiWiki. https://sourceforge.net/projects/tikiwiki/, 2021. → page
91

[154] T. Titcheu Chekam, M. Papadakis, T. F. Bissyandé, Y. Le Traon, and
K. Sen. Selecting fault revealing mutants. 25(1):434–487. ISSN
1573-7616. → page 103

172

https://doi.org/10.5281/zenodo.3385377
http://dx.doi.org/10.1145/3106237.3106298
https://doi.org/10.1145/3106237.3106298
https://sourceforge.net/projects/tikiwiki/

[155] A. Tombros and Z. Ali. Factors affecting web page similarity. In
Proceedings of the 27th European Conference on Advances in Information
Retrieval Research, ECIR 2005, pages 487–501. Springer-Verlag, 2005. →
page 9

[156] P. Tonella, F. Ricca, and A. Marchetto. Recent advances in web testing.
Advances in Computers, 93:1–51, 2014. → pages 3, 11

[157] A. Torsel. Automated Test Case Generation for Web Applications from a
Domain Specific Model. In 2011 IEEE 35th Annual Computer Software
and Applications Conference Workshops, pages 137–142, July 2011. →
pages 5, 60

[158] Tudu Lists. Tudu Lists. https://sourceforge.net/projects/tudu/, 2021. →
page 91

[159] J. Upchurch and X. Zhou. Malware provenance: code reuse detection in
malicious software at scale. In 2016 11th International Conference on
Malicious and Unwanted Software (MALWARE), pages 1–9, Oct 2016. →
page 15

[160] E. Viglianisi, M. Dallago, and M. Ceccato. Resttestgen: automated
black-box testing of restful apis. In 2020 IEEE 13th International
Conference on Software Testing, Validation and Verification, ICST 2020,
pages 142–152. IEEE, 2020. → pages 118, 119, 122

[161] T. A. Walsh, P. McMinn, and G. M. Kapfhammer. Automatic detection of
potential layout faults following changes to responsive web pages (n). In
2015 30th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2015, pages 709–714, Nov 2015. → page 114

[162] Y. Wang and M. Kitsuregawa. Link Based Clustering of Web Search
Results, pages 225–236. Springer Berlin Heidelberg, 2001. → page 38

[163] H. Wu, L. Xu, X. Niu, and C. Nie. Combinatorial testing of restful apis. In
ACM/IEEE International Conference on Software Engineering, ICSE 2022,
2022. → page 118

[164] xpath. Xpath, XML Language, 2022. URL
https://en.wikipedia.org/wiki/XPath. Accessed: Sep 1, 2022. → page 56

[165] G. Xu, A. Rountev, Y. Tang, and F. Qin. Efficient checkpointing of java
software using context-sensitive capture and replay. In ESEC/SIGSOFT
FSE, pages 85–94. ACM, 2007. → pages 119, 146

173

https://sourceforge.net/projects/tudu/
https://en.wikipedia.org/wiki/XPath

[166] R. Yandrapally and A. Mesbah. Mutation analysis for assessing end-to-end
web tests. In 2021 IEEE International Conference on Software
Maintenance and Evolution, ICSME 2021, pages 183–194, 2021. → page
vii

[167] R. Yandrapally, S. Thummalapenta, S. Sinha, and S. Chandra. Robust test
automation using contextual clues. In Proceedings of 2014 International
Symposium on Software Testing and Analysis, ISSTA 2014, pages 304–314.
ACM, 2014. → page 2

[168] R. K. Yandrapally. Near-Duplicate Study Tools and DataSet For
Replication. https://github.com/NDStudyICSE2019/NDStudy, 2019.
GitHub Repository. → pages 10, 38

[169] R. K. Yandrapally. FragGen VM and Dataset for replication.
https://doi.org/10.5281/zenodo.4007539, 2021. Zenodo Software Upload.
→ pages 44, 62, 82

[170] R. K. Yandrapally. MAEWU - Mutation analysis framework for E2E web
testing. https://github.com/mutationwebapp/maewu, 2021. → pages
88, 106, 115

[171] R. K. Yandrapally. Replication package - Carving UI Tests to Generate API
Tests and API Specifications. https://github.com/apicarve/apicarver, 2022.
→ pages 120, 135, 146

[172] R. K. Yandrapally and A. Mesbah. Fragment-based test generation for web
apps. IEEE Transactions on Software Engineering (TSE), pages 1–1, 2022.
→ pages vi, 134

[173] R. K. Yandrapally, A. Stocco, and A. Mesbah. Near-duplicate detection in
web app model inference. In Proceedings of the ACM/IEEE International
Conference on Software Engineering, ICSE 2020, page 12 pages. ACM,
2020. → pages vi, 42, 48, 49, 54, 64, 66, 69, 70

[174] R. K. Yandrapally, S. Sinha, R. Tzoref-Brill, and A. Mesbah. Carving ui
tests to generate api tests and api specifications. ICSE 2023, 2023. → page
vii

[175] B. Yang, F. Gu, and X. Niu. Block mean value based image perceptual
hashing. In 2006 International Conference on Intelligent Information
Hiding and Multimedia, pages 167–172, 2006. → pages 14, 16, 49

174

https://github.com/NDStudyICSE2019/NDStudy
https://doi.org/10.5281/zenodo.4007539
https://github.com/mutationwebapp/maewu
https://github.com/apicarve/apicarver

[176] J. Yang, E. Wittern, A. T. Ying, J. Dolby, and L. Tan. Towards extracting
web api specifications from documentation. In 2018 IEEE/ACM 15th
International Conference on Mining Software Repositories, MSR 2018,
pages 454–464, 2018. → page 147

[177] X. Yao, M. Harman, and Y. Jia. A study of equivalent and stubborn
mutation operators using human analysis of equivalence. In Proceedings of
the 36th International Conference on Software Engineering, ICSE 2014,
pages 919–930, New York, NY, USA, 2014. Association for Computing
Machinery. ISBN 9781450327565. → page 107

[178] H. Yee, S. Pattanaik, and D. P. Greenberg. Spatiotemporal sensitivity and
visual attention for efficient rendering of dynamic environments. ACM
Trans. Graph., 20(1):39–65, Jan. 2001. ISSN 0730-0301. → pages
14, 16, 49

[179] C. Zauner. Implementation and benchmarking of perceptual image hash
functions. PhD thesis, 2010. → pages 14, 16, 49

[180] Y. Zhang and A. Mesbah. Assertions are strongly correlated with test suite
effectiveness. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2015, pages 214–224,
New York, NY, USA, 2015. Association for Computing Machinery. ISBN
9781450336758. → page 86

[181] Y. Zheng, Y. Liu, X. Xie, Y. Liu, L. Ma, J. Hao, and Y. Liu. Automatic web
testing using curiosity-driven reinforcement learning. In 2021 IEEE/ACM
43rd International Conference on Software Engineering, ICSE 2021, pages
423–435, 2021. → page 84

175

Appendix A

Publications

I also contributed as a second author in the following research paper during my

PhD. However, it is not being included as part of this dissertation.

• ”Visual web test repair” [146]: Andrea Stocco, Rahulkrishna Yandrapally,

and Ali Mesbah, European Software Engineering Conference and Sympo-

sium on the Foundations of Software Engineering (ESEC/FSE 2018). 503 -

514. (acceptance rate: 19%)

176

	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgments
	Dedication
	1 Introduction
	1.1 Dynamic State Equivalence and Near-Duplicates in Web Apps
	1.2 Generating and Maintaining Effective Regression Test Suites
	1.3 Enabling API Testing for Web Applications

	2 Near-Duplicate Detection in Web App Model Inference
	2.1 Introduction
	2.2 Redundancies in Web App Models
	2.3 Near-Duplicate Algorithms
	2.3.1 Information Retrieval
	2.3.2 Web Testing
	2.3.3 Computer Vision

	2.4 Empirical Study Design
	2.5 RQ1: Near-Duplicates in Web Apps
	2.5.1 Dataset Creation
	2.5.2 Classification of Changes

	2.6 RQ2: Classification of state-pairs
	2.6.1 Subject Systems
	2.6.2 Manual Classification (Ground Truth)
	2.6.3 Threshold-Based Classification

	2.7 RQ3: Impact on Inferred Models
	2.7.1 Thresholds for SAFs (RQ3.1)
	2.7.2 Using Application Knowledge (RQ3.2)
	2.7.3 Impact of Efficiency (RQ3.3)

	2.8 Threats to Validity
	2.9 Related Work
	2.10 Conclusions and Future Work

	3 Fragment-Based Test Generation For Web Apps
	3.1 introduction
	3.2 Background and Motivation
	3.2.1 Automatic Test Generation for Web Apps
	3.2.2 Automatic Test Generation Challenges
	3.2.3 Page Fragmentation

	3.3 Approach
	3.3.1 Fragment-based State Abstraction
	3.3.2 Fragment-based Model Inference
	3.3.3 Test Generation
	3.3.4 Implementation

	3.4 Evaluation
	3.4.1 Subject Systems
	3.4.2 Competing techniques

	3.5 State-pair Classification (RQ1)
	3.5.1 Procedure and Metrics
	3.5.2 Results

	3.6 Model Inference Comparison (RQ2)
	3.6.1 Procedure and Metrics
	3.6.2 Results

	3.7 Regression Testing Suitability (RQ3)
	3.7.1 Test Breakages (RQ3a)
	3.7.2 Effectiveness and Robustness of Test Oracles (RQ3b)

	3.8 Discussion
	3.9 Related Work
	3.10 Conclusions and Future Work

	4 Mutation Analysis for Assessing End-to-End Web Tests
	4.1 Introduction
	4.2 Background
	4.3 UI Manifestation of Real Faults in Web Applications
	4.4 Dynamic DOM Mutation
	4.4.1 Attribute
	4.4.2 Tree
	4.4.3 Content
	4.4.4 Style
	4.4.5 Event

	4.5 Technique
	4.5.1 Trace Collection
	4.5.2 Trace Analysis
	4.5.3 Generating Mutation Candidates
	4.5.4 Mutating Dynamic DOM and Mutation Score

	4.6 Evaluation
	4.6.1 Experimental Setup
	4.6.2 Competing Techniques
	4.6.3 Procedure and Metrics
	4.6.4 Results
	4.6.5 Discussion

	4.7 Related Work
	4.8 Threats to validity
	4.9 Conclusion and Future Work

	5 Carving UI Tests to Generate API Tests and API Specifications
	5.1 Introduction
	5.2 Background and Motivating Example
	5.3 Approach
	5.3.1 API Test Carving
	5.3.2 API Specification Inference

	5.4 Implementation
	5.5 Empirical Evaluation
	5.5.1 Experiment Setup
	5.5.2 Quantitative Analysis of ApiCarv Stages
	5.5.3 RQ1: Coverage Rates and Execution Efficiency of Tests
	5.5.4 RQ2: Accuracy of Inferred OpenAPI Specification
	5.5.5 RQ3: Augmentation Effectiveness of Carved API Tests
	5.5.6 Threats to Validity

	5.6 Related Work
	5.7 Conclusion and Future Work

	6 Concluding Remarks
	6.1 Contributions
	6.2 Research Questions Revisited
	6.3 Reflections and Future Directions

	Bibliography
	A Publications

