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Abstract—End-to-end UI testing plays a significant role in the
regression testing of web apps, in order to validate end user
functionality. Because of their importance, UI test suites are
often created and maintained manually by employing browser
automation tools such as selenium. However, currently, there
exists no reliable method to ascertain the fault-finding capabilities
for UI test suite of any given web app. Mutation testing, a well
known fault-based testing technique for assessment of test suite
adequacy, relies on generating mutants by making small changes
to source code imitating programmer errors. However, mutation
testing is difficult to employ for any given web app because of the
heterogeneous nature of the multiple server-side and client-side
components they can contain. In this work, we present MAEWU,
a mutation analysis framework for assessing web UI test suites,
which is applicable to any web app as it mutates the dynamic
DOM in the browser instead of the source code. We propose 16
mutation operators that mutate the behaviour and appearance
of web elements to mimic the nine categories of web app faults
found through an analysis of 250 bug reports. We evaluate our
dynamic mutation analysis framework on six open source web
apps. The results from our empirical evaluation demonstrate that
MAEWU is effective in assessing Web UI test suites in terms of
adequacy and facilitates test suite quality improvements.

I. INTRODUCTION

Modern web apps are highly dynamic in nature and con-
tain a heterogeneous collection of server-side and client-side
components that interact in real-time to update the web page
in response to user requests. Consequently, testing web apps
programmatically is challenging and is often performed in an
end-to-end (E2E) fashion by exercising the GUI functionality
of web apps. Given the short release cycles of web apps,
automated regression testing using UI tests plays a significant
role in the validation of web app changes.

Because of their importance, companies currently invest
manpower in creating and maintaining such UI tests suites.
However, despite this reliance on UI test suites to validate
web app functionality, currently, there is no universal tool
to determine their fault-finding capabilities. Therefore, in
practice, UI test suite adequacy is determined by coverage
of common use case scenarios, and certain server-side and
client-side code. However, such coverage metrics are generally
considered to be limited for assessing test effectiveness [1],
[2].

Instead, mutation analysis, which mimics programmer er-
rors by making small changes to the application has become an

accepted norm in establishing the fault revealing capabilities
of test suites. Existing mutation analysis tools for web apps
are not universally applicable as they are designed for specific
programming languages or web development frameworks.
Therefore, currently, there exists no mutation analysis frame-
work to assess the actual effectiveness of web-based UI test
suites.

In this paper, we propose MAEWU, a Mutation analysis
framework for End-to-end web UI test suites. MAEWU mu-
tates the dynamic DOM of the web app in the browser in
order to bypass the limitations of a source code-based muta-
tion analysis employed by existing techniques. Consequently,
MAEWU only requires the URL of the web app and its test
suite to perform mutation analysis; it neither requires access
to the source code of the web app nor employs any proxy to
instrument the client-side code.

Using the dynamic DOM state as an artifact for mutation
is conceptually novel because we mutate the output instead
of the actual source code written by programmers. While
DOM mutation allows for universal applicability in all web
apps, it also poses a unique challenge vis-a-vis its availability
during test execution. First, in traditional mutation analysis, a
mutation applied to a source code artifact is preserved over
multiple invocations during test execution. The same does not
apply for a mutated DOM in a browser which can disappear
upon navigation or a page reload. In addition, as web pages
are dynamically generated, applying a mutation consistently
to each appearance of the browser state is challenging as
a state equivalence between concrete instances needs to be
established. Second, a typical modern web page is essentially
a set of individual UI components, where each component can
appear in multiple different pages. As a result, mutating a web
element such as a navigation link necessitates identifying all
its instances across web pages. We make use of an automatic
page fragmentation technique and a tree comparison technique
in order to accomplish this task. A similar challenge exists for
other kinds of GUI testing such as desktop applications [3] or
Mobile apps [4]. However, researchers in those areas are able
to rely on mutating the source artifacts because of uniformity
in technologies used to generate the corresponding UI. For
example, Android apps use Java for handling UI interactions
and layout files to define UI structures, which can be mutated
to cover various classes of bugs. In web testing, however, such



homogeneity of languages exists (e.g., a web app could be built
using a combination of JavaScript, HTML, CSS, and PHP).

One of the foremost requirements for an effective muta-
tion analysis tool is the set of mutation operators designed
to generate artifact-specific transformations that can mimic
programmer errors. While existing techniques [5], [6] have
proposed several DOM specific mutation operators, they pre-
dominantly rely on mutating the source code artifacts of
programming languages like Java or JavaScript. Existing DOM
operators also do not cover the wide range of possible DOM
transformations that may mimic application faults. As a matter
of fact, to the best of our knowledge, there exists no prior
research to establish the relationship between UI or DOM
changes in the browser and application faults for web apps.
Existing work [7] on categorization of web app faults is limited
to the location (e.g., server, client) of the bug. Therefore, in this
work, we manually analyze 250 bug reports from open source
web app bug repositories to identify the UI manifestations of
real faults, and design 16 mutation operators (MOs), which
manipulate the interactive behaviour and appearance of web
elements to mimic real faults.

We evaluate MAEWU on six open source web apps. Our
results show that MAEWU (1) generates non-equivalent mu-
tants, (2) consistently applies the mutants dynamically across
test executions. The report generated show the mutation score
of a given UI Test suite along with the failed mutants to help
improve the test suite.

We summarize the contributions of our work as follows:
• We define a set of mutation operators for dynamic mu-

tation of web pages in the browser and remove the need
for modifying the source code to evaluate the efficacy of
end-to-end test suites.

• We developed a mutation analysis framework, called
MAEWU, that is universally applicable to end-to-end test
suites of all web applications regardless of the back-
end and front-end programming languages used for app
development. MAEWU [8] is publicly available.

• We also provide a dataset of 250 labelled bug reports from
open source web apps, and 300 labelled mutants that can
be used by future researchers to determine the efficacy
of UI test suites and mutation analysis techniques.

II. BACKGROUND

In this section, we provide a brief overview of the current
state of practice in web testing. Selenium Web Driver is one of
the most popular tools for automated UI testing. It provides
API in most popular programming languages such as Java
and Python to remotely control web browsers and automate
UI interactions. Listing 1 shows an example selenium UI test
case taken from our subject set. Typically, test cases start by
fetching the home page of the web app by using the provided
url. Thereafter, a series of test actions are performed and test
oracles are used to verify the resulting browser state according
to a business case scenario of the web app.

As the web app evolves, such UI tests created for an earlier
version of web app are used to validate existing functionality

Listing 1: Selenium JUnit Test Case

p r i v a t e WebDriver driver = new ChromeDriver ( ) ;

@Before
p u b l i c vo id setUp ( ) {
driver .get (app_url ) ;

}

@Test
p u b l i c vo id testCollabtiveLoginUser ( ) t h r ow s Exception {
driver .findElement (By .id ( " username " ) ) .sendKeys ( "←↩

username001 " ) ;
driver .findElement (By .id ( " p a s s " ) ) .sendKeys ( " password001←↩

" ) ;
driver .findElement (By .cssSelector ( " b u t t o n . l o g i n b t n " ) ) .←↩

click ( ) ;
driver .findElement (

By .xpath ( " / / * [ @id = \ " mainmenue \ " ] / l i [ 2 ] / a " ) ) .←↩
click ( ) ;

assertTrue (
driver .findElement (By .cssSelector ( " body " ) ) .getText←↩

( )
.matches ( " ^ [ \ \ s \ \ S ]* username001 [ \ \ s \ \ S ]* $ " )
) ;

and detect any regression bugs that may have been introduced
in the newer version. An adequate UI test suite should there-
fore cover the entire functionality of the web app through a
combination of test actions and oracles to aid early detection
of regression bugs through test failures.

As web apps can be incredibly complex with heterogeneous
components written in multiple server-side and client-side
programming languages, their bugs can be equally daunting
to detect and fix. Typically, individual server-side components
and client-side JavaScript are tested through unit testing while
UI testing is used as a form of end-to-end testing to validate
high level use case scenarios from an end-user point of view.
Several researchers [7] have attempted to characterize web
application bugs in terms of their location, significance and
so on by analyzing the bug repositories of open source web
apps. As UI tests only have access to the browser state, a
UI test suite can only reveal application bugs have a direct
manifestation in the UI. Such UI bugs are the focus of our
mutation analysis for ascertaining the quality of the test suites.

III. UI MANIFESTATION OF REAL FAULTS IN WEB
APPLICATIONS

In traditional mutation testing, mutation operators are de-
signed to perform code changes that imitate programmer errors
that cause application bugs. As majority of the modern web
pages are automatically generated, mutating them may not
directly imitate programmer errors. On the other hand, relying
on mutation of source code artifacts written by programmers
is impossible given the fragmented nature of web development
ecosystem. Therefore, we decided to design mutation operators
to imitate the manifestation of application bugs on the UI of
web pages. In order to do so, we first needed to understand
the UI manifestation of application bugs in web apps.

Manual analysis of real faults in web applications in the
existing research [7] has focused on the location and root-
cause analysis of faults in source code. Marchetto et al. [9]
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also defined 32 categories of faults that can be used for fault
seeding in the web app source code. However, their work
relied on introducing faults specific to program constructs and
technologies in use at the time of publication.

In contrast, in this work, we are focused only on the front-
end manifestation of bugs regardless of their root-cause and
specific web development frameworks. Therefore, we collected
real bugs reported for ten popular open source web apps
shown in Table I with a minimum of 1000 downloads in
sourceforge [20] or greater than 100 stars in GitHub. In
total we collected 6331 reports tagged to be bugs from bug
repositories. We then randomly selected 250 bug reports to be
analyzed manually, where for each bug report, we ascertained
the specific UI characteristics that were considered to be faulty,
and created tags to reflect them. Our bug report analysis for
UI impact resulted in a hierarchy of categories as shown
in Figure 3.

Of the 250 bug reports we analyzed, we found that nearly
44% mention the impact on UI, while 35% did not have
any UI manifestation as shown in Figure 1. In order to be
able to manually analyze the bug reports, we familiarized
ourselves with each of the web apps in terms of the provided
UI functionality. However, we still could not assess the UI
impact from the report for 21% of the reports. Of the bugs
which impact the UI, we found that 81% of them had an effect
on the behaviour of the web app as shown in Figure 2. Bugs
categorized to have broken functionalities were either because
of incorrect handling of events associated with web elements
or content related faults. Only 19% of the bugs concerned the
appearance of the web page, that were either found to be due
to incorrect rendering of the web pages or incorrect css styling
resulting in overlapped or incomprehensible content.

Using this study on the UI manifestation of real bugs in web
applications, we design our mutation operators for dynamic
mutation of web pages in the browser.

TABLE I: Bug Repositories

Name loc languages # Bugs

tikiwiki [10] 4M PHP, JavaScript 1975
reactive trader [11] 117K C#, TypeScript 296
mrbs [12] 187K PHP, JavaScript 495
pgweb [13] 262K Go, JavaScript 553
tudu lists [14] 29K Java, JavaScript 68
addressbook [15] 45K PHP, JavaScript 173
crater [16] 80K Laravel, Vue 380
claroline [17] 350K PHP, JavaScript 336
koel [18] 475K Laravel, Vue 1297
phplist [19] 1.3M PHP, JavaScript 758

TABLE II: Mutation Operators and their types

Type Operator Name Abbr

Attribute AttributeAdd AAM
AttributeDelete ADM
AttributeModify AMM

EventHandler EventHandlerAdd EHAM
EventHandlerDelete EHDM
EventHandlerModify EHMM

Tree TreeInsert TIM
TreeDelete TDM
TreeMove TMM

Content ContentInsert CIM
ContentDelete CDM
ContentModify CMM

Style StyleVisibility SVM
StyleColor SCM
StylePosition SPM
StyleSize SSM

IV. DYNAMIC DOM MUTATION

The functionality and data presented to the user through
web app GUI is a DOM that is built together by back-
end and front-end programs written in languages such as
Java, PhP, JavaScript. UI test suites written using browser
automation tools such as Selenium therefore indirectly test
all these programs while exercising the DOM. Therefore,
mutation operators targeting only client side JavaScript or
server side JSP cannot assess the quality of the test suites
as the resulting mutants only represent a subset of all possible
changes that can occur in the DOM. In fact, espousing our
sentiment, Mirzaaghaei et al. [21] argue that the coverage of
UI test suites should be entirely determined using the GUI of
the web app.

Considering the dynamic DOM state as a mutation target is
interesting because it is essentially the output of the web app
under test. In fact, the dynamic DOM is what end-to-end UI
tests assess. UI tests are therefore expected to detect visual/-
textual changes in the rendered web page through oracles, and
detect behavioural changes by triggering UI actions. Mutation
analysis of UI tests therefore will have to be designed to satisfy
both these aspects of the UI testing to be considered useful.

Taking into account the UI impact of bugs, we designed
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16 mutation operators, and placed them into five categories
based on the aspect of web elements they target, as shown
in Table II. Generated mutants can potentially imitate bug
categories corresponding to UI functionality, appearance or
both. For example, a changed id or class attribute can po-
tentially impact the behaviour as well as appearance of the
corresponding web element.

However, it is important to note the possibility that the muta-
tion may not impact the web page functionality or appearance
at all in any way. For example, mutating the position of an
already invisible element will not change the web page.

In the rest of this section, we describe the mutation operators
in greater detail and provide examples using the sample web
page shown in Figure 4.

A. Attribute

In modern web apps, attributes are used to define character-
istics or properties of web elements, and therefore changing at-
tribute values can impact both their appearance and behaviour.
Some attributes such as “src” for <img> elements are used to
define the image urls. Attributes such as “action” for <form>
elements can even specify server communication.

For example, consider the sample web page shown in Fig-
ure 4. Using css rules, appearance of heading and form is
set using class selector, while id is used for submit button.
Our three attribute MOs are currently configured to mutate
commonly used attributes taken from current HTML stan-
dard [22]. However, developers can even use custom attributes

to accomplish the same. In any case, being an extensible
framework, MAEWU can be configured to use any set of
attributes considered to be important for specific web apps,
in order to generate interesting mutants.

B. Tree

Through the tree mutation operators, we aim to alter the
DOM structure of the web page. When a tree operator is
applied to a web element, the element as well as its children
get affected. For example, in our sample web page, applying
TreeDelete operator on the div of the class form will lead to
its deletion as well as its child elements, the input element
and the submit button.

The TreeMove operator can imitate the appearance “posi-
tion” bugs as well as impact functionality of the moved subtree
because of the changed parent through inherited event handling
or style rules. The TreeInsert and TreeDelete operators are de-
signed to imitate the functionality bugs– unexpected-elements
and missing-elements respectively.

C. Content

Of the content related bugs we analyzed as part of the study,
some of the root causes included errors fetching data from
back-end, parsing form input data, and client-side scripting
errors that prevent rendering of data.

In each of these analyzed bugs, the displayed textual content
is either incorrect, unexpected, or completely missing from
the web pages. Our three mutation operators – ContentInsert,
ContentDelete and ContentModify – are aimed at imitating
these content bugs.

It is also worth pointing out that most UI test cases typically
access only interactive web elements and are likely to miss the
content related bugs as a result.

D. Style

Cosmetic or appearance bugs we analyzed related to un-
expected positioning, size and color of specific web elements,
primarily caused by wrong css properties computed in runtime.
Our analysis of appearance related bugs revealed three com-
puted (from static rules) CSS properties – color, position, size
– We designed the three style MOs – StyleColor, StylePosition,
StyleSize – that mutate corresponding css properties in runtime
to imitate bugs causing content to be either incomprehensible,
place elements in unexpected positions or have unexpected
sizes.



Our fourth style MO, StyleVisibility imitates the func-
tionality bugs missing-elements and unexpected-elements by
toggling the visible CSS property of web elements.

E. Event

We designed three mutation operators to cover the bugs
related to broken event handling. Bugs of this category affect
the behaviour of the interactive elements like buttons while
often having no apparent change in the appearance and visible
content of the web pages. In order to imitate such bugs, we
created three mutation operators that insert, remove or modify
the event handlers of web elements.

As such, broken event handling can also happen because of
a variety of reasons such as bugs on the server side, broken
server communication, or even bugs in JavaScript libraries
being used on the client side. However, since we are interested
in imitating the eventual behaviour observed by the end users,
we directly modify the event handlers for the web elements.
In order to ensure the JavaScript code for event handlers
themselves are valid, we reuse already seen event handlers
for other elements within the web app.

V. TECHNIQUE

Our technique, MAEWU, aims to assess the mutation score
for a given UI test suite and a web app URL by dynamically
applying mutation operators to browser states. MAEWU con-
tains four main components 1) Trace Generator (TG), 2) Trace
Analyzer (TA), 3) Mutant Generator (MG), and 4) Mutation
Engine (ME).

A high level architecture of MAEWU shown in Figure 5
indicates the inputs and outputs for each of the components.
The mutation analysis performed by MAEWU can be divided
in two main processes. While the first process concerns
generation of a set of candidate mutants, the second part
concerns evaluating the test suite efficacy using the candidate
mutants.

To generate the candidate mutants, given a test suite, TG
collects the test trace as a series of dynamic DOM states
associated with test steps, and TA analyzes them to identify
the reappearance of web elements across states by using a page
fragmentation technique. MG then creates candidate mutants
by applying mutation operators on the identified web elements.
To evaluate the efficacy of the test suite, ME applies each
candidate mutant to the dynamic DOM in the browser while
executing the test suite.

In the rest of this section, we describe each of our compo-
nents in detail.

A. Trace Collection

Given a UI test suite, the trace generator (TG) captures
a test suite trace as a sequence of trace elements, recording
browser states as defined in 1 before and after each test step. In
addition, an “observer” script that runs in the browser records
JavaScript accesses to web elements for each browser state
during test execution.

Algorithm 1: Extract Logical Web Elements
Input: states = [S1, S2..] /* Set of Browser States */
Output: LWE /* Set of Logical Web Elements (ω) */

1 LWE=[]
2 foreach S ∈ states do
3 elems = getWebElems(S) /* all elements of state */
4 foreach ε ∈ elems do
5 foreach ω in LWE do
6 if belongsTo(ε,ω) then
7 ω.add(ε) /* belongs to cluster */
8 added ← true
9 end

10 if not added then
11 ωnew ← [ε] /* create new ω */
12 LWE.add(ωnew)
13 end
14 end
15 Function belongsTo(ε, ω):
16 ε, ← lwe[0]
17 F1 ← getFragment(node1) /* fragments from VIPS */
18 F2 ← getFragment(node2)
19 if TreeComp(F1, F2) = 0 then /* Tree Edit Distance */
20 if XPath(node1) = XPath(node2) then
21 return True /* same relative XPath */
22 return False
23 return False
24 End Function

Definition 1 (Browser State (S)). is a tuple <D,V , K> where
D is the HTML source or DOM and V is the screenshot of
the web page. K is the JavaScript access map for the browser
state recorded by the observer script, where each map entry
corresponds to a web element and its accesses.

A trace element as defined in 2 records the browser state
transition in the web app caused by the test step execution.

Definition 2 (Trace Element). is a tuple (ε, Sb, Sa, α), where
the action α is performed upon the web element ε in the
browser state Sb results in the transition to the browser state
Sa.

B. Trace Analysis

Once the trace is collected for a web app, the trace an-
alyzer (TA) first extracts a list of all web elements in the
recorded browser states and a set of text tokens. The set
of text tokens which we call the mutation data tokens (∆)
are extracted from content nodes as well as attribute values.
Thereafter, since our approach of web app mutation use
web elements from dynamic DOM as mutation artifacts, we
designed the trace analyzer (TA) to cluster equivalent web
elements into logical web elements (ω) in order to achieve a
consistency in mutation. Formally, logical web elements are
defined in 3.

Definition 3 (Logical Web Element (ω)). is a tuple <E, κ>,
where E is the set of concrete web elements {ε1, ε2, ..} in
which any two web elements εi, εj are equivalent to each
other. κ is the combined list for JavaScript accesses of all
web elements in E, where access for each element is extracted
from the access map K of its parent state (S).

Consider the two example pages in Figure 6 that contain
several web elements in common. If we decide to mutate the
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"search box" in page1, we need to ensure the same mutation is
applied to it in the page2 as well if a reliable mutation score
for the UI test suite is to be computed. A similar problem
does not arise for the traditional source code mutation since
the applied mutation is available for every instantiation of the
corresponding line of code, regardless of the dynamic program
state. For example, a mutation applied to a HTML source
artifact in the server will be available each time the artifact is
accessed from the browser.

However, establishing the equivalence of web elements
is challenging because of the dynamic nature of modern
web apps. Existing research shows that techniques relying
on attributes such as ids to compare web elements tend to
be unreliable, because such attributes are often generated
dynamically. Similarly using XPath locators in web pages is
also not desirable because we want to compare individual web
elements across different web pages. For example in Figure 6,
the XPath for "add Project" in the two pages is not the same.

Our solution is based on the observation that a single
web page does not necessary provide a singular functionality.
Instead, each web page UI is stitched together dynamically
and contains independent UI components such as navigation
bars that reappear in different web pages. We associate the
ownership of web elements to smaller page fragments instead
of the entire web pages, and use the equivalence of these
fragments to establish similarity of web elements.

Our element extraction algorithm shown in algorithm 1
uses a popular page segmentation technique VIPS [23] to

generate smaller page fragments, compare fragments using
a tree comparison technique [24], and, uses relative XPaths
of web elements inside these fragments for establishing their
equivalence.

C. Generating Mutation Candidates

Given a set of logical web elements (ω) and available
mutation data tokens (∆), Mutant Generator (MG) generates a
set of all possible mutation candidates by selecting appropriate
mutation operators based on the characteristics of the web
element and a random mutation data token if required.

Definition 4 (Mutation Candidate (C)). is a tuple <ω, O, δ>
where ω is the logical web element upon which the mutation
operator O is applied using the optional mutation data δ.

However, modern web pages are notoriously heavy [25],
[26], where an “average” web page is 2MB in size, can contain
more than 600 web elements of 32 different types. Without
a notion of significance or importance associated with each
mutant to allow for a selection strategy, the total number
of mutants to analyze can quickly become unmanageable
especially given the resource intensive nature of UI testing.

In this work, we employ a biased-spread random mutant
selection strategy where the probability (Equation 1) of se-
lecting a mutant depends on its score ( Equation 2). Our
score for a candidate combines 1) four static features of
the web element – isLeafNode, hasText, isInteractive,
isDisplayed, 2) three dynamic features based on the collected
web element trace – numRepetitions, numTestAccesses,
numJavaScriptAccesses, and 3) its relationship to already
selected mutants. The score is positively impacted by high
static (St) and dynamic (Dn) scores, and negatively impacted
by the spread score (Sp) based on the presence of already
selected mutants for the same web element.

The selection probability is defined as

Pr(Ca
j ) =

score(Ca
j )∑n

i=1 score(C
a
i )

(1)

where a, b and c are constants such that (0 < a, b, c < 1),
the set of ‘n’ available candidates ({Ca

1..n}) and the set of ‘m’
already selected candidates ({Cs

1..m}), and the candidate score
is

score(Ca) = a ∗St(ωa)+ b ∗Dn(ωa)− c ∗Sp(Ca, {Cs
1..m}) (2)



TABLE III: Experimental Subjects

Subject Test Suite

Version Loc Cases Loc Loc

AddressBook 8.0.0 16298 27 49 1325
Claroline 1.11.10 352537 40 46 1822
Collabtive 3.1 264642 40 48 1935
MantisBT 1.1.8 141607 41 43 1748
MRBS 1.4.9 34486 22 51 1114
PPMA 0.6.0 575976 23 54 1232
Total 866995 196 47 9176

Based on their relevance to the corresponding MO, the static
features of web element capture the usefulness of a given
candidate based on its likelihood of imitating a bug. For ex-
ample, a candidate with the MO “ContentDelete” and a visible
page heading are likely to imitate bugs related to missing
content. On the other hand, the dynamic features capture the
importance of a given web element based on the frequency of
its appearance and its extent of usage during test execution.
While the static features we define are inspired from AST
based features for program statements [27], dynamic features
are similar to ranking based on execution traces in source
code mutation [28]. Our spread score (Sp), inspired from the
spread-random mutant selection strategy which selects only
one mutant per source code statement, decreases the candidate
score instead of filtering them out.

We compute Static (St) and dynamic (Dn) scores as a
sum of all corresponding feature values, where values for a
static feature (boolean) is 1 if true or 0 otherwise. Finally,
the probability of selecting a mutant (Equation 1) is then
computed as the ratio of a candidate score to the total score
of all candidates.

D. Mutating Dynamic DOM and Mutation Score

For each mutation candidate (C =< O,ω >), the Mutation
Engine (ME) resets the web app and runs the test suite
while applying the mutation operator (O) to all the concrete
instances (ε) of the logical web element (ω).

Existing techniques on mutation analysis for web applica-
tions mutate the source code and compare the output DOM
to determine the mutation kill score [5], [6] where there are
observable changes. This often involves manual analysis of
source code [28] to determine equivalent mutants as well. In
our analysis, the mutant is considered to be killed by the test
suite if any of the test cases fail either because of a failing
test action or a test oracle.

VI. EVALUATION

To assess the efficacy of our mutation testing approach, we
answer the following research questions.

RQ1 How efficient is MAEWU in generating non-equivalent
mutants?

RQ2 How useful are the generated mutants for improving
end-to-end UI test suites?

TABLE IV: Bug Severity based on User Perception

Description of Severity Severity Score

I did not notice any fault 0

I noticed a fault, but
I would return to this website again 1

I noticed a fault, but
I would probably return to this website again 2

I noticed a fault, and
I would not return to this website again 3

I noticed a fault, and
I would file a complaint 4

TABLE V: Mutant Stubbornness

Required UI Testing effort Stubbornness Score

No action needed 0

Locate the element in the page 1

Perform action on the element 2

Assert content, attribute or CSS property
of the element 2

Perform action and Assert a property in the
resulting browser state 3

Perform action and navigate to a different page
to assert the effect of the action 4

TABLE VI: Mutant Generation per subject
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TABLE VIII: Mutant quality Per Operator
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#Mutants 9 10 13 15 4 4 29 26 37 37 27 30 17 17 6 19 300
#Non-Eq 4 10 12 12 2 4 22 26 36 35 27 30 17 17 6 18 278
#Killed 0 2 5 0 0 0 0 7 6 8 13 1 6 3 0 5 56

Non-Eq % 44 100 92 80 50 100 76 100 97 95 100 100 100 100 100 95 93
Mutation Score 0.00 0.20 0.42 0.00 0.00 0.00 0.00 0.27 0.17 0.23 0.48 0.03 0.35 0.18 0.00 0.28 0.20
Bug Severity 2.0 2.3 2.5 2.5 2.5 2.5 0.7 1.3 0.8 2.2 2.4 1.8 1.4 2.0 1.8 2.0 1.7
Stubbornness 2.5 2.8 3.1 3.0 3.0 2.8 2.0 2.0 2.0 1.9 1.5 2.0 2.1 2.0 2.0 2.1 2.1

A. Experimental Setup

We use six open-source web apps as our subject systems,
each with a manually written JUnit Selenium UI test suite
used in previous web testing research [29]. Table III lists the
name, version and size of our subjects and the corresponding
test suite characteristics. All our experiments were run on a
Red Hat Enterprise Linux Server (RHEL-7) and Chrome-v84
web browser.

B. Competing Techniques

We found two existing mutation analysis tools for web
app UI testing – WebMuJava and AjaxMutator. WebMuJava
is developed by Praphamontripong et al. [5], [30] for JSP
and Java Server based web apps. It is not publicly available.
Nishiura et al. [31] developed AjaxMutator to mutate Ajax and
DOM API calls used in client-side JavaScript of web apps. We
explain the reason for not including AjaxMutator below.

1) Issues using AjaxMutator: AjaxMutator uses the Rhino
JavaScript parser to extract mutation targets for four specific
features of client-side JavaScript – event registration; timer;
Ajax calls; and DOM API to append and assigning attribute.
The current implementation for AjaxMutator takes a single
JavaScript file as input and generates mutants. It then runs
a given Selenium Test Suite for all the generated mutants to
compute the mutation score. However, we were unable to use
it on our subjects.

The first issue we faced is regarding the input JavaScript
file expected by AjaxMutator. All of our test subjects, which
are modern web apps contained JavaScript in multiple files
and libraries along with “InlineHTML” within other program
files such as PHP, JSP. In order to get AjaxMutator to work on
our subjects, we wrote a file parser to extract JavaScript from
source files. However, Rhino could not parse these extracted
JavaScript files, with sizes exceeding 50K lines for four of our
subjects where upon we spent considerable amount of time
trying to clean the files manually without success.

Secondly, for the two subjects we could generate mutants,
we found no clear mechanism to reliably apply the gener-
ated mutants into the web app when we use this extracted
JavaScript file. Because of this limitation, we could not even
assess the resulting impact of these mutants on the actual
functionality of the web app.

C. Procedure and Metrics

For each of our subjects, we configure MAEWU with the
URL, the accompanying test suite, and a maximum limit of 50
mutants to be selected. Once MAEWU generates the mutants
and computes the mutation score, we manually analyzed the
impact on the behaviour of the web app for each of these
selected mutants.

1) Analyzing mutants: In order to verify the impact of the
mutation on the web page, we compare the live mutated state
to the original state first in terms of visual appearance, and
second, by exercising the functionality offered by target web
element. If required, we also analyze the client-side JavaScript
to understand the impact of the mutation.

We classify the mutants that impact neither the functionality
nor the appearance of the web page to be equivalent. We
then manually label the generated mutants to assess their
1) perceived bug severity, and 2) mutant stubbornness to
determine their quality. [32]

The mutation score, bug severity score and stubbornness are
computed only for non equivalent mutants.

2) Computing Mutation Score: We compute the mutation
score as the percentage of killed non-equivalent mutants to the
total number of non-equivalent mutants for each of the subject
apps.

3) Computing Bug Severity: Based on the mutant impact
on the UI, we compute a bug severity score shown in Table IV
using 18 manually labelled boolean features adapted from
previous work [33]. In the interest of space, we skip discussing
the actual adaption which is available along with the full
decision tree to compute severity in our tool repository [8].

4) Computing Mutant Stubbornness: Existing work defines
stubbornness through either, source code features [34] that
make certain mutants difficult to kill or, by their relationship
to the test suites [35], [36] such as the number of tests
that can kill the mutant. The difficulty in finding the right
program input [34] to kill the mutant is the common theme in
categorizing mutants to be stubborn.

In this work, we model our stubbornness score based on the
amount of effort required for a UI tester to kill the mutant. The
stubbornness score lies between 0 and 4 as shown in Table V.
On the one extreme are easy-to-kill mutants that cause test
failures by virtue of just reaching the mutated browser state.



For example, it the mutation results in a blank page. On
the other end of the extreme are the mutants that can result
in back-end changes that infect other browser states while
keeping the mutated state unaffected in terms of appearance
or functionality. For example, a wrong transformation of user
input in the infected state that is saved and retrieved from a
database in another page.

Next, we discuss the results of our analyses and to save
space, we will use the abbreviated operator names for the rest
of the paper as defined in Table II.

D. Results

1) RQ1: Table VI shows the total number of candidates
extracted by the Mutant Generator, and the characteristics of
the 50 selected candidates per subject. On an average, the
logical web element (ω) size for each selected candidate is 56,
with collabtive having the highest repetition of concrete web
elements at 78. Overall, nearly 17K concrete web elements
were selected to be mutated in order to apply these 300
mutations in the browser at runtime. The average static score
which determines the quality of mutant based on the web
element and operator characteristics is 3, whereas the average
dynamic score is 67. Note that all the selected logical web
elements were covered by the test suites either directly by
performing action on them during test execution or indirectly
by causing a JavaScript to access these elements in the browser
as recorded by our ObserverScript.

The results of our manual classification of these mutants
based on their impact on UI functionality and appearance
is shown in Table VII. On an average, 93% of the mutants
generated by MAEWU were found to be non-equivalent. As
shown in Table VIII, SCM operator is responsible for 7 out of
the 22 equivalent mutants that we found in total. In each of
these 7 equivalent mutants, we found that the mutation applied
by SCM using the css property “color” has been overridden by
a css rule for the child elements. AAM generated 5 equivalent
mutants because the added attributes like “id” were not used
for any of the JavaScript in the page, rendering that attribute
addition meaningless.

The most interesting and hard to classify equivalent mutants
were created by EHAM and EHDM operators which generated
3 and 2 equivalent mutants respectively. In our implementa-
tion, we used the JavaScript “element.addEventListener” API
to add and replace event listeners. We provide a random event
handler function that is recorded by the Trace Generator for
the subject. However, we found two reasons for EHAM having
no impact on app functionality. First, because the functions
being called within the new event listener were not available
in the browser state being mutated, and therefore they just fail
silently with no change to functionality in case of EHAM.
Second, our mutation script could not override the default
behaviour of the elements as defined by the browser. In future,
we plan to automatically detect when such default behaviour
impacts JavaScript manipulation of event listeners and select
candidates accordingly.

The rest of the operators had a close to or equal to 100%
success rate in generating non equivalent mutants.

2) RQ2: Table VIII shows the results of our manual analy-
sis of mutants as well as the mutation scores for the test suites
for each of our mutation operators.

Our manual analysis revealed that all three event handlers
MOs have a predictably high bug severity score because they
are designed to break the behaviour of the web elements
which is perceived to be the most severe fault in a web page.
While maintaining a high severity score, EHAM, EHDM and
EHMM also created mutants with the highest stubbornness
score because killing these mutants required both performing
action as well as verifying the result of the action. A mutation
score of 0 for the UI test suites being evaluated is also
indicative of the difficulty in killing these mutants.

Interestingly, ADM and AMM also have a high bug severity
score similar to event handler MOs because they are also
capable of affecting the behaviour. For example, deletion of the
“href” and “input.type” attribute was particularly effective in
breaking the element behaviour. However, the test suites were
able to kill these mutants more frequently with 42% of AMM
mutants being killed because they impact common interactive
web elements that are often used by the test suites.

TDM operator has also generated mutants with a high bug
severity primarily because it causes the pages to lose informa-
tion and functionality by deleting parts of the page. However,
these mutants are very easy to kill with a stubbornness score
of only 1.5. Often, to kill the mutant, it is enough for a test
script to try and locate the web element

Indeed, other MOs that can cause loss or change of informa-
tion – SVM, CDM, CIM and CMM – have a high bug severity
score and generate stubborn mutants because a tester has to
either perform an action or assert the expected property of the
target web element in order to kill the mutant. Interestingly,
however, TMM which also can cause information loss through
DOM hierarchy manipulation often caused only cosmetic
defects, and therefore has a lower severity score.

In terms of usefulness, SCM generated the mutants with
worst severity of 0.7 while generating majority of the equiva-
lent mutants in our entire experiment. SSM and SPM have a
similarly low severity score overall but generated mutants that
impacted the behaviour of the page by blocking or reducing the
accessibility of content or functionality of other web elements.

Overall, we found that the operators that are able to generate
mutants of high bug severity and high stubbornness are most
useful in exposing the weaknesses of the UI test suites. On an
average, MAEWU generated mutants with a severity of 1.7 and
a stubbornness score of 2.1, while exposing the limitations of
existing test suites for our subjects which have a low mutation
score of 0.20.

E. Discussion

1) Web App Dynamism and Test Fragility: In RQ2, we
used two factors, bug severity and stubbornness score, in
understanding if a mutant can be useful in improving existing
UI test suites. However, an important aspect of modern web



apps that we did not take into consideration in the current
work is the presence of dynamic data. For example, content or
element properties like ‘id’ that are dynamically generated and
should not be considered to be bugs. So, generating mutants
that may be similar to these dynamic changes to the web page
will not be useful in determining the fault revealing capabilities
of the test suites. Indeed, such mutants may deter practitioners
from employing the framework, as these mutants are similar
to equivalent mutants.

However, one of the biggest challenges of maintaining an
end-to-end UI test suite for web apps is the fragility of web
element locators [37], which require costly manual analysis
and test maintenance. An interesting idea would be to use the
MOs designed in this work, and select mutants that can reveal
fragile test locators and test oracles.

2) Bug Severity for modern web apps: The existing study
on the bug severity [33] used in our evaluation was primarily
based on older web apps with limited dynamism. The study
classifies any css related problem to be cosmetic in nature and
gives a very low severity score. However, modern web apps
rely heavily on fluid layout models in order to make the web
app functionality accessible on multiple device and display
configurations. While SCM, SSM, SPM generated mutants of
very low severity on a fixed display configuration, these can
be valuable in validating layout features and revealing layout
bugs. Therefore, we believe a bridging study to better model
the appearance related bugs that impact modern web apps is
needed to determine bug severity for such mutants.

VII. RELATED WORK

For mutation analysis of web apps for assessment of UI test
suites, there are only two existing research papers. Prapha-
montripong et al. [5], [30] define and implement mutation
operators for JSP and Java Server based web applications in
a tool called webMuJava which extends general Java based
mutation operators. Nishiura et al. [31] defined mutation
operators specific to client-side JavaScript of web applications
used for DOM manipulations. To overcome the limitations of
existing work owing to their usage of source code mutation, we
propose to mutate dynamic DOM to mutate GUI functionality.
Maezawa et al. [38] validates ajax code using three delay
based mutation operators.

In addition, for web testing in general, Shahriar et al. [6]
defined 11 mutation operators on PHP and JavaScript source
code to find bugs related to cross-site scripting. Walsh et
al. [39] implement CSS mutation operators that change the
CSS rules related to the size (e.g., width) of web elements
in order to simulate cross-browser page rendering faults.
Mirshokraie et al. [28] developed mutation operators specific
to JavaScript in web apps in addition to generic JavaScript
operators. We do not consider either of these tools to be
competing techniques to our work because they are neither
intended to assess UI test suites, nor necessarily applicable to
all web apps.

In broader area of mutation analysis for GUI applications,
Alegroth et al [40], apply mutations to desktop Java applica-

tion to evaluate GUI testing approaches. Oliveira et al. [41]
developed scripts to automate mutant generation for seven of
the 18 mutation operators defined in [40] to show that GUI
mutation operators are better than traditional method level
Java mutation operators in seeding GUI faults in applications.
Linares-Vásquez et al., [42], [43] created a taxonomy of An-
droid bugs with the purpose of defining source-code mutation
operators for Android apps. Deng et al. [4], [44] defined
mutation operators to change core components of Android
apps (e.g., intents, event handlers, XML files and activity
lifecycle). Additionally, Luna et al. [45] presented Edroid,
a tool that uses 10 mutation operators oriented to validate
changes in the GUI.

In both the fields, namely desktop GUI and mobile testing,
source code mutation has been employed to a good effect
because of the homogeneity of the programs under test.

VIII. THREATS TO VALIDITY

External validity threats concern the generalization of our
findings since we used a limited number of subject apps
and analyzed only 300 mutants overall. We have chosen six
subject apps used in previous web testing research, pertaining
to different domains, and fully randomized the mutants to be
analyzed in order to mitigate the threat. Threats to internal
validity come from the manual labelling of mutant categories
and features, which was unavoidable because no automated
method could provide us with the required ground truth.
The manual bug analysis, mutant analysis and labelling was
performed by the first author, and the methodology was
developed together by the two authors by analyzing example
bugs, mutants independently and establishing a discussion to
resolve conflicts. For bug severity analysis, we used a labelling
methodology outlined in prior work to mitigate the threat to
validity. For reproducibility of our findings, we made our tool
publicly available [8] along with usage instructions and used
subject systems.

IX. CONCLUSION AND FUTURE WORK

Despite the significance of UI test suites in validating web
app functionality, currently, no mutation analysis tool exists
for ascertaining their fault-finding capabilities. Existing tools
for web app mutation testing rely on source code muta-
tion and therefore cannot be universally applied because of
the heterogeneous web app development ecosystem. In this
work we developed MAEWU, an extensible mutation analysis
framework for web apps which mutates the dynamic DOM
during test execution. Given only the web app URL and
a UI test suite to assess, MAEWU is able to automatically
extract unique web elements in the web app and generate non-
equivalent mutants that imitate UI manifestation of real web
app bugs, select useful mutants based on the web element
characteristics and perform mutation analysis to reveal the
limitations of the test suite. As part of the future work, we
plan to improve the mutant selection strategy by incorporating
human feedback to compute mutant score.
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