
Carving API Tests and Specification from UI Tests

Abstract—Modern web applications make extensive use of API
calls to update the UI state in response to user events or server-
side changes. For such applications, API-level testing can play
an important role, in-between unit-level testing and UI-level
(or end-to-end) testing. Existing API testing tools require API
specifications (e.g., OpenAPI), which often may not be available
or, when available, be inconsistent with the API implementation,
thus limiting the applicability of automated API testing to web
applications. In this paper, we present an approach that leverages
UI testing to enable API-level testing for web applications.
Our technique navigates the web application under test and
automatically generates an API-level test suite, along with an
OpenAPI specification that describes the application’s server-side
APIs (for REST-based web applications). A key element of our
solution is a dynamic approach for inferring API endpoints with
path parameters via UI navigation and directed API probing.
We evaluated the technique for its accuracy in inferring API
specifications and the effectiveness of the “carved” API tests.
Our results on seven open-source web applications show that the
technique achieves 98% precision and 56% recall in inferring
endpoints. The carved API tests, when added to test suites
generated by two automated REST API testing tools, increase
statement coverage by 24% and 29% and branch coverage by
75% and 77%, on average. The main benefits of our technique
are: (1) it enables API-level testing of web applications in cases
where existing API testing tools are inapplicable and (2) it creates
API-level test suites that cover server-side code efficiently, while
exercising APIs as they would be invoked from an application’s
web UI, and that can augment existing API test suites.

I. INTRODUCTION

Software applications routinely use web APIs for establish-
ing client-server communication. In particular, they increas-
ingly rely on web APIs that follow the REST (REpresenta-
tional State Transfer) architectural style [1] and are referred
to as RESTful or REST APIs. A typical REST API call starts
with an HTTP request made by the client, e.g., the front-end
of a web application running in the browser, and ends with a
response sent by the server or the back-end of the application.
To help clients understand the operations available in a service
and the request and response structure, REST APIs are often
described using a specification language, such as OpenAPI [2],
API Blueprint [3], or RAML [4].

In between unit and UI testing, API testing places the
focus of testing on the operations of a service as well as
sequences of operations; it exercises the server-side flows more
comprehensively than unit testing but without the need to go
through the UI layer. API-level testing is generally driven by
code-coverage goals as well as API-coverage goals (e.g., [5]).

For web applications that use RESTful APIs whose specifi-
cations are available, a number of automated testing techniques
and tools that have been presented in recent years (e.g., [6],
[7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18])
could be leveraged for API-level testing. These tools take as

input an API specification, and automatically generate test
cases for exercising API endpoints defined in the specification.
However, in practical scenarios, using these tools may not
always be possible.

First, for applications that do not have RESTful APIs,
such tools are inapplicable. This rules out large classes of
web applications, such as Java Enterprise Edition as well as
legacy web applications, which could benefit just as well from
automated API-level testing. Second, for web applications with
RESTful APIs, API specifications may not be available. This
can occur because of different reasons, often because the APIs
are meant for use by the specific web application only or appli-
cations within an enterprise, and not exposed for invocation by
external clients. Thus, formal API documentation is considered
less important and not done due to development pressures
or other factors. Moreover, even when API specifications are
available, they can be obsolete and inconsistent with API
implementations [19]. As a web application and its APIs
evolve, the specifications—which can be large and complex—
often fail to co-evolve due to the maintenance effort involved.1

In this work, we address the challenges of enabling auto-
mated API-level test generation universally for web applica-
tions, irrespective of whether they use RESTful web services,
and automatically inferring OpenAPI specification for web
applications that use RESTful APIs. We present a dynamic
technique that executes the web application via its UI to
automatically create (1) API-level test cases that invoke the
application’s APIs directly, and (2) a specification describing
the application’s APIs that can be leveraged for development
and testing purposes.

Although prior work has investigated carving unit-level
tests from system-level executions using code-instrumentation
techniques (e.g., [23], [24], [25]), there exists no technique for
creating API-level test cases from UI paths or test cases.

Our technique monitors the network traffic between the
browser and the server, while navigating the application’s UI,
and records the observed HTTP requests and responses. Then,
it applies filtering to exclude the requests (and their responses)
that are considered unnecessary for API testing. Next, it builds
an API graph from the filtered requests and analyzes the
graph to infer a specification that captures API endpoints
(or resource paths), the applicable HTTP methods (e.g., GET,
POST), and the request/response structure for each API opera-
tion (combination of HTTP method and API endpoint). A key
feature of our technique is that it infers path parameters or

1Although there exist tools for automatically documenting REST APIs (e.g.,
SpringFox [20] and SpringDoc [21]), which can reduce the cost of keeping
API specifications up-to-date with API implementations, their applicability is
limited (e.g., to web applications implemented using Spring Boot [22]).

1

variables for API endpoints from concrete endpoint instances
observed during navigation of UI paths. Moreover, it uses
a novel algorithm for directed API probing and API graph
expansion to discover more concrete endpoint instances that
would otherwise be missed by UI path navigation alone.

The generated API specification can serve as documentation
for server-side APIs of a web application (even if the APIs are
not RESTful) and also be fed as input into an existing API
testing tool for automated test generation (e.g. [6], [7], [8],
[10], [12]) or used for checking inconsistencies in existing
API specifications (for RESTful APIs).

The “carved” API test cases are derived from UI paths.
Because these tests bypass the UI layer, they execute much
more efficiently, and are less prone to brittleness than UI-level
tests. Yet, they cover the same server-side code as the UI paths
from which they are derived and exercise the APIs in ways
that they would be invoked from the UI.

We implemented our technique in a tool called APICARV
that takes as input a UI test suite (generated or manually writ-
ten) and carves API test cases and an OpenAPI specification.

We conducted an empirical study on seven open-source
web applications to evaluate the technique’s effectiveness in
carving API tests and inferring OpenAPI specifications. With
respect to test carving, our results are two-fold. First, they
quantify the expected benefits of carved API tests: the tests
attain similar coverage as the UI test paths from which they
are derived, but at a fraction of the execution cost of UI
tests: on average, more than 10x reduction in test execution
time. Second, our results illustrate that carved API tests can
increase the coverage achieved by two automated API test
generators, EvoMaster [26], [6] and Schemathesis [27], [28]:
on average, 29% (77%) gains in statement (branch) coverage
for EvoMaster and 24% (75%) statement (branch) coverage
gains for Schemathesis. Finally, for OpenAPI specification
inference, our results show that the technique computes API
endpoints (or resource paths) with 98% precision and 56%
recall against the ground truth of existing API specifications.
These results demonstrate the benefits of our technique.

The contributions of this work are:
• A first-of-its-kind approach for carving API test cases

from UI paths that enables API-level testing for web
applications, irrespective of the frameworks they use.

• A novel technique for inferring API specifications for web
applications that use RESTful services.

• An implementation of the techniques in a tool called
APICARV that is publicly available [29].

• Empirical assessment of APICARV, demonstrating the
tool’s effectiveness and the benefits of carved tests.

II. BACKGROUND AND MOTIVATING EXAMPLE

REST APIs [1] are typically described in a specification
(e.g., in OpenAPI [2] format, previously known as Swagger)
that lists the available service operations, the input and output
data structures for each operation, and the possible response
codes. Listing 1 shows a snippet of the OpenAPI spec for the
REST API of a web application called realworld [30] (one

Listing 1: Example OpenAPI specification.
1 info:
2 title: Conduit API
3 servers:f
4 - url: http:/localhost:3000/api
5 paths:
6 /articles/{id}: /* path item */
7 get: /* HTTP method */
8 parameters:
9 - name: id

10 in: path
11 required: true
12 schema: Integer
13 example: 2
14 responses:
15 200:
16 description: OK
17 content:
18 application/json: /* MIME */
19 schema:
20 ref: '/schemas/SingleArticleResponse'

of the applications used in our evaluation). The spec lists path
items (under paths:), where a path item consists of a resource
path (also referred to as “API endpoint”) together with one
or more HTTP methods (or “Operations”). The path item
illustrated in Listing 1 shows the resource path (line 6), the
HTTP method (line 7), the parameters specification (lines 8–
13), and the response specification (lines 14–20). The response
specification lists the status code (line 15) and the response
data format (line 18) and structure (lines 19–20). The structure
definition contains a reference to a schema defined elsewhere
in the document (omitted here).

The resource path /articles/{id} (line 6) is specified
as a URI template [31], with path parameter id. Such a
resource path describes a range of concrete URIs via parameter
expansion. A concrete URI instance in an HTTP request
targeting that endpoint contains an integer value for id (e.g.,
/articles/2). More generally, a path item can contain four
kinds of parameters—path, query, cookie, and header. Path and
query parameters are related to the URI, whereas header and
cookie parameters are associated with HTTP request headers.

Figure 1 shows a UI test path for the realworld [30] web
application. The test performs five UI actions that navigate
through different application states. Each action exercises a
specific functionality. For example, “Click[follow]” invokes
the functionality to follow a given user. The figure also shows
the server-side APIs invoked by the browser for each UI
action. The UI states are then updated based on the server
response. For instance, “Click[follow]” invokes the API
“POST[/users/user1/follow]” and the UI state is updated,
to show that “follow user” succeeded.

From the perspective of functional testing of the server-
side APIs of a web application, the UI actions and the API
calls invoke the same functionality and, therefore, would
have the same code coverage and fault-detection abilities.
However, invoking the APIs directly, instead of going through
the UI layer, has advantages: API calls exercise the service-
side functionality much more efficiently and are less prone
to the brittleness usually associated with UI tests [32], while
exercising the APIs in the manner they that are invoked
from the UI. Thus, carved API tests can be convenient for
developers to use in the course of their development activities.
This is not to say that carved API tests are an alternative to, or
replacement for, the UI tests. UI testing has an important role

2

GET- /articles
GET - /tags
GET- /users/user2
GET - /users/user1/info

GET - index.html
Resources

API
API

POST - /users/user1/follow

GET - newArticle.html
Resources

GET - /users/user2
API

POST- /articles
GET - /articles/2
GET - /users/user2/info

GET - article.html
Resources

API
POST- /articles/2/comments
GET - /articles/2

API

Load URL

Click [New Article] Click [Publish Article] Click [Post Comment]

Bl
an

k
Pa

ge

Comments
New Comment

Post Comment

Article content with extra content.

User2
June 31, 2031 Article 2

tag1 Edit Article Delete Article

User2SettingsNew ArticleHome

Comments

New Comment
Post Comment

User2
June 31, 2031

Comment 1

User2SettingsNew ArticleHome

Article content with extra content.

User2
June 31, 2031 Article 2

tag1 Edit Article Delete Article

Article 1
Article content
More

»

tag1

Tag2

tag3

Tags

Prev 2 ...1 Next

User2SettingsNew ArticleHome

Article Feed
FollowUser1

June 31, 2031

Article 1
Article content
More

»

Prev 2 ...1 Next

User2SettingsNew ArticleHome

Article Feed
UnfollowUser1

June 31, 2031

Click [Follow]

tag1

Tag2

tag3

Tags

User2SettingsNew ArticleHome

Article Title

What is this article about

Write your article ..

Enter Tags

Publish Article

Fig. 1: Example illustrating a sequence of UI actions and states along with the API calls that are triggered by UI events.

Report

API Test Carving API Specification Inference

API
Recording

API
Filtering

API Graph
Analysis

API
Probing

API Test
Execution

Raw API List API Test Suite OpenAPI Spec

Web
Crawling

UI Test Suite

API
Graph

Augmentation with
successful API calls

Fig. 2: Overview of our technique APICARV.

to play in covering end-to-end flows through all the application
tiers, however, such testing is more suitable for system-level
or acceptance testing in practice, and less so for supporting
developers in their server-side development activities. Our first
goal in this work, therefore, is to enable API-level testing
such that it is universally applicable for all web applications
irrespective of the web frameworks they use.

The second goal of our work is to infer an API specification,
such as the one illustrated in Listing 1, automatically for the
server-side APIs of a web application. The inferred specifi-
cation documents the APIs and can also be used as input to
automated API testing tools (e.g., [6], [7], [8], [10], [12]). API
specification inference is applicable to web applications that
implement RESTful APIs. Although API specifications could
also be inferred for other types of web applications and could
serve as useful documentation of server-side APIs, they would
be less effective as inputs to automated API testing tools.

The core challenge in specification inference is how to
compute resource paths with path parameters accurately (e.g.,
the {id} component of resource path /articles/{id}). The
concrete URI instances in the requests observed at runtime
contain integer values for id, such as /articles/2. The
technique has to determine which segments of concrete URIs
represent path parameters. Moreover, a resource path can have
multiple path parameters, which adds to the complexity of the
problem. In the next section, we present a dynamic-analysis-
based carving technique for addressing these challenges.

III. APPROACH

Figure 2 presents an overview of our technique called
APICARV. The input is a suite of UI test cases for a web
application—the test cases could be automatically generated
(e.g., created via automated web crawling) or implemented
by developers. The output consists of an API-level test suite,
along with a test-execution report, and for applications that

use RESTful APIs, an OpenAPI specification describing the
server-side APIs of the web application. The API test suite
is composed of carved test cases that are augmented with
API calls made during specification inference. The test-carving
phase of the technique involves API recording and API fil-
tering. The specification-inference phase constructs an API
graph from the API test suite, and analyzes the graph to create
an OpenAPI specification. A key step during specification
inference is API probing, which attempts to expand the set
of resource paths observed during UI test execution and
discover additional information for creating more accurate
specifications as well as augmenting the carved test suite.
Next, we describe the two phases of the technique in detail.

A. API Test Carving

APICARV performs API test carving in two steps. In the
first step, API recording, the technique monitors API calls that
are triggered through the execution of the UI test suite and
logs the raw API calls. To record API calls, we add network
listeners to the browser executing the UI tests, which capture
the raw outgoing and incoming HTTP traffic. As Figure 1
illustrates, a UI action can result in multiple API calls being
executed, e.g., Click[Publish Article] triggers one POST
and three GET requests. These requests, together with their
corresponding responses, are logged during API recording.

In the second step, API filtering, the technique applies
a series of filters—operation filter, status filter, and MIME
filter—to the raw API calls to remove the calls that are
irrelevant for API test and specification carving. The operation
filter is based on HTTP method checking and is designed
to omit methods that are unrelated to resource manipulation.
This filter removes all calls with HTTP methods TRACE and
CONNECT. The status filter checks the response status codes
and excludes calls with unsuccessful requests, indicated by
4xx and 5xx response codes. Finally, the MIME filter checks
the MIME type of the response payload and retains only
those calls whose response payloads contain JSON or XML
data (i.e., MIME types text/json or text/xml). For example,
the resource-related API calls shown in Figure 1, which are
irrelevant for API-level testing, are removed during filtering.

In the implementation of our technique, the filtering step
is configurable. The three filters described here proved to

3

API Sequence

API graph

API Sequence
 with Probes

Pr
ob

es

Ex
ec

ut
io

n
O

ut
pu

t

Expanded API Graph

OpenAPI
Specification

Start Stop

No Yes

API
 Runner

ProberAPI Graph
Builder

Spec
Generator

Invoke
Probing?

Legend Return Call Process Decision I/O

AP
I G

ra
ph

Fig. 3: The specification-inference flow (InferSpec).

be adequate for our experimentation. However, the user can
configure filtering to prevent omission of certain requests
considered essential for API testing or provide custom filters
to omit additional types of API calls not covered by the three
filters. Filtering configuration may also be needed based on
web application characteristics; e.g., the MIME filter would
be relevant if the application consists of RESTful APIs.

The output of the filtering step consists of sequences of API
calls from which the carved API test suite is created.

B. API Specification Inference

As discussed in II, the core problem in specification in-
ference that our approach addresses is computing path pa-
rameters for resource paths. The technique has to detect the
path components of concrete URI instances that represent
parameters, while handling paths with multiple parameters and
compensating for server-side state changes as a result of UI
actions that can potentially impact server responses for URIs.

Figure 3 presents a flow chart, InferSpec, illustrating
specification inference. InferSpec takes as input the API
sequences created by API carving and produces as output
an API specification. It builds an API graph to represent the
discovered resource paths and analyzes the graph to create
the API specification. InferSpec also analyzes the graph to
generate API probes (i.e., concrete API requests) that are
executed against the application to discover additional valid
API calls that are missing in the initial set of API sequences.2

This step is intended to address the incompleteness of the
initial API sequences and, thereby, improve the accuracy of
the inferred API specification. As an additional benefit, the
successful probes can be used for augmenting the carved API
test suite, potentially increasing its coverage.

1) API Graph Construction: Algorithm 1 presents the
algorithm for building the API graph. Before describing the
algorithm, we introduce some terminology.

Definition 1 (Path Segment). Given a URI U , a path segment ν
is a tuple (n, d, p, e, l, v), where n is the segment string, d is the
index of the segment in U , p is the parent path for ν, e is a boolean
indicating whether ν is the final segment of U (and, therefore, an
API endpoint), l is the response payload (if e is true), and v is the
path parameter inference result for ν.

2In the implementation of the technique, API probing can be limited by
upper bound on exploration time or number of probes executed.

Algorithm 1: API graph construction
1 Function BuildAPIGraph:

Input: apiset ← [A1...An] /* Set of API Calls */

Init: G ← ϕ /* API Graph for the given set of API calls */

2 foreach A ∈ apiset do
3 path ← A.Rq.URL.path
4 SegArray ← path.split() /* split path into segments */

5 parent ← root /* a dummy starting node */

6 foreach Segi ∈ SegArray do
7 parentPath ← join(Seg0, . . . , Segi−1)
8 v ← ϕ /* path parameter inference later */

9 if i = SegArray.size then
10 end-point ← True
11 else
12 end-point ← False
13 end
14 pathSeg ← (Segi, i, parentPath, SegArray.size, endpoint, v)

segExists ← for-all νs ∈ N AreEqual(pathSeg, νs)
15 if segExists then
16 G.addEdge(parentNode, νsim)
17 parentNode = νsim

18 else
19 G.addNode(pathSeg)
20 G.addEdge(parentNode, pathSeg)
21 parentNode = pathSeg
22 end
23 end
24 end
25 return G
26 end
27 Function AreEqual (ν1, ν2):

Output: True or False
28 if (ν1.n ̸= ν2.n) ∨ (ν1.d ̸= ν2.d) then
29 return False /* different name or path index */

30 end
31 if ν1.p = ν2.p then
32 return True /* same name, path index, and parent path */

33 end
34 if IsEndPoint(ν1) ∧ IsEndPoint(ν2) then
35 return CompareResponses(ν1.l, ν2.l)
36 else
37 return False /* different parent path */

38 end
39 end

Definition 2 (API Graph). An API graph G = (νr , N , E) is a
directed acyclic graph, where νr is the dummy root node of the
graph, N is a set of nodes, and E is a set of edges. Each node in
N is a path segment and a pair of consecutive segments in a URI is
connected by an edge in E .

Definition 3 (Graph Path). A graph path in an API Graph is a
sequence of path segments (νr, . . . , νx) that connects the root node νr
to any graph node νx. A complete path is a path from νr to a node
where ν.e is true.

An API graph is constructed for a set of URIs (from API
calls). For example, each API graph illustrated in Figure 4
represents the URIs shown to the left of the graph. Each graph
node, except the root node, represents one or more segments
from the URIs, and each complete path represents a URI.

Function BuildAPIGraph (lines 1–27) of Algorithm 1 it-
erates over a given set of API calls (A) and builds an API
graph by parsing each request URI into a path in the graph.
For each URI, the algorithm splits the URI into segments and
then builds a path segment for each segment (lines 7–14). If
a path segment ν is not similar to any of the existing path
segments in the graph, ν is added to the graph (lines 15–23).

The similarity of two path segments is determined by the
function AreEqual (lines 28–40), which first compares the
names and path indexes of the two segments (line 29). If either
of these do not match, the path segments are considered to

4

/users/user1/info
/users/user2/info
/users/user1/follow
/users/user2
/tags
/articles
/articles/2
/articles/2/comments

/

articles

2user2

users

user1

follow comments

tags

info

/users/{user}/info
/users/user1/follow
/users/user2
/tags
/articles
/articles/2
/articles/2/comments

(a) API calls carved from the UI execution

/

articles

2
user2

users

user1

follow comments

tags

info

/users/user1/info
/users/user2/info
/users/user1/follow
/users/user2
/tags
/articles
/articles/2
/articles/2/comments
/users
/users/user1

/users/{user}/info
/users/user1/follow
/users/{user}
/users
/tags
/articles
/articles/2
/articles/2/comments

(b) Probing Stage 1: probes for intermediate nodes
/users/user1/info
/users/user2/info
/users/user1/follow
/users/user2
/tags
/articles
/articles/2
/articles/2/comments
/users
/users/user1
/users/user2/follow

/

articles

2user2

users

user1

follow comments

tags

info

/users/{user}/info
/users/{user}/follow
/users/{user}
/users
/tags
/articles
/articles/2
/articles/2/comments

(c) Probing Stage 2: probes from bipartite analysis
/users/user1/info
/users/user2/info
/users/user1/follow
/users/user2
/tags
/articles
/articles/2
/articles/2/comments
/users
/users/user1
/users/user2/follow
/articles/1
/articles/1/comments
/tags/1
/tags/2
/tags/3

/users/{user}/info
/users/{user}/follow
/users/{user}
/users
/tags
/articles
/articles/{article}
/articles/{article}/comments
/tags/{tag}

/

articles

2user2

users

user1

follow comments

tags

info

1 2 31

(d) Probing Stage 3: probes from response analysis
Each subfigure shows the API graph (middle) built from API calls (left)
and the inferred specification (right). The color coding of API calls (spec
paths) indicates calls recorded (paths created) during UI navigation (black)
and probes (paths) created in the previous stage (green) and the current stage
(red). The color coding of nodes illustrates nodes created after UI navigation
(gray), nodes with responses discovered via probing (green), and nodes with
extra responses because of probing (yellow). The edge colors highlight edges
created by probes in the previous stage (green) and the current stage (red).

Fig. 4: Illustration of specification inference.

be different. For example, as shown in Figure 4, each string
segment in a URI has its own node in the graph. If the names
and path indexes match, the function next compares the parent
paths of the segments (using string comparison) and considers
the segments to be equivalent if the parents paths match
(lines 32–33). Otherwise, if the segments represent endpoints,
the function CompareResponses is called to determine segment
equivalence (lines 35–36). Note that a response object is
available for a path segment only if there exists an API call
that ends at the segment, making it an endpoint.

CompareResponses relies on structural similarity of re-
sponses instead of matching the entire responses. For a re-
sponse with JSON or XML data, it ignores the values and

Algorithm 2: Generating API specification from API graph
1 Function ExtractOpenAPI:

Input: G /* API Graph after path variable inference */

Output: uriTemplates ← ϕ
2 G ← MergeLeafNodes(G)
3 foreach do ν ∈ G
4 if νi.e = True then
5 paths ← GetGraphPaths(νi)
6 if paths.size > 1 then
7 template ← getURITemplate(paths)
8 else
9 template ← paths[0]

10 end
11 uriTemplates.add(template)
12 end
13 return uriTemplates
14 end
15 Function MergeLeafNodes:

Input: G /* API Graph for the given set of API calls */

16 foreach νi ∈ {νn} do
17 foreach νj ∈ {νn} do

/* Assign a variable when nodes have matching responses */

18 if (νi.e=True) ∧ (νj .e=True) ∧ (CompareResponses(νi,
νj)=True) then

19 νi.v = νj .v = variableMap.get()
20 end
21 end
22 return G
23 end
24 Function GetGraphPaths:

Input: G, νx /* An API Graph and a node in it */

Output: paths ← ϕ
25 foreach ζi ∈ G.getPathsto(νx) do
26 path ← ϕ
27 foreach νi ∈ {νn} do
28 if νi.v != ϕ then
29 path.add(νi.name)
30 else
31 path.add(νi.v) /* v is set by MergeLeafNodes */

32 end
33 end
34 paths.add(path)
35 end
36 return paths
37 end

builds a tree with keys in the data. It then asserts the struc-
tural similarity of the trees to determine response similarity.
For example, consider the requests [GET /users/user1/info]
and [GET /users/user2/info] in Figure 4). If the response
for [GET /users/user1/info] is {"id":1, "name":"user1",

"role":"user"}, we build a tree using the keys [id, name,

role]. After building a similar tree for the response of [GET
/users/user2/info], we check whether the trees are equiva-
lent using a tree-comparison technique. (Our implementation
uses the APTED [33] tree comparator.)

2) API Specification Generation: Algorithm 2 presents the
steps involved in generating API specification from the API
graph. Our goal in specification inference is to make the
specification precise in terms of number of path items for each
API endpoint. An ideal specification should have exactly one
path item describing an API endpoint, and URI templates with
path parameters make it possible to do so.

The function MergeLeafNodes in Algorithm 2 (lines 15–
23) performs response comparison to determine whether two
nodes with different names belong to the same API endpoint.
In addition, it makes use of the graph structure by getting paths
that reach the same endpoint node in the API graph (lines 24–
37). Finally, after computing a list of URIs that belong to
similar endpoint nodes in the API graph, we perform a simple
path-index-based match per URI segment to extract a template.

5

API Graph
/

articles

2user2

users

user1

follow comments

tags

info

Bipartite Graph built using a
subset of nodes

user2

user1

follow

info

Fig. 5: Bipartite analysis for API probe generation.

For example, in Figure 4a, the graph paths for
URIs /users/user1/info and /users/user2/info end at
the same segment. GetGraphPaths returns the strings
/users/user1/info and /users/user2/info. Because we
know that these two URI are equivalent, we extract a template
/users/{user}/info with path parameter {user}.

Similarly, in Figure 4b, the graph paths for URIs
/users/user1 and /users/user2 end at different segments.
However, MergeLeafNodes performs response comparison to
determine that these segments are equivalent and assigns a
variable (line 19). Then, GetGraphPaths uses that variable and
returns the string /users/{user} for both URIs. Finally, that
returned string is used as the template with path parameter
{user}. We use variable name user here for readability; our
implementation creates variable names such as var0.

3) Probing: API Graph Expansion: The API graph created
from the set of API calls seen during UI navigation is limited
by the completeness of UI tests, which can affect the precision
of the inferred API specification. To address this, APICARV
expands the initial API graph via systematic API probing.

At a high level, the technique creates four types of probes—
intermediate, bipartite, response, and operation—where inter-
mediate and bipartite probes are built via API graph analysis,
response probes are based on HTTP response analysis, and
operation probes aim to discover unseen operations for known
API endpoints. After the probes have been built, they are
sent to the server using a scheduling algorithm that avoids
data dependencies. The successful probes (i.e., probes with
response codes other than 4xx or 5xx) are used for enhancing
the API graph and augmenting the API test suite. InferSpec
uses the expanded API graph to generate a potentially more
accurate API specification.

Intermediate probes: These probes are created for API
graph nodes that do not have an associated server response
(i.e. ν.e is false). For example, in Figure 4b, the probes /users
and /users/user1 are intermediate probes built for the nodes
users and user1 that do not have an associated response. In
this case, the two endpoints are indeed valid. As a result,
InferSpec adds new path item /users and computes path
variable user for the existing path /users/user2, which it
replaces with the template /users/{user}.

Bipartite probes: These probes are generated by building
a bipartite graph from join nodes (i.e., nodes that have more
than one predecessor) in the API graph. To illustrate, consider
the example in Figure 5, where join node info has two
predecessors (user1 and user2). For this node, the technique
constructs the bipartite graph shown in the figure: the left

/

articles

2user2

users

user1

follow comments

tags

info

checkpoint

get - /users/user1/info
get - /users/user2/info
post - /users/user1/follow
get - /users/user2
get - /tags
post - /articles
get - /articles/2
get - /articles/2/comments

Original API list

get - /users/user1Probes get - /tags/1

Final List to execute

No Graph Vertex

get - /users/user1/info
get - /users/user1
get - /users/user2/info
get - /tags/1
post - /users/user1/follow
get - /tags/1
get - /users/user2
get - /tags
post - /articles
get - /tags/1
get - /articles/2
get - /articles/2/comments

Fig. 6: Example for illustrating probe scheduling.

part of the graph contains all predecessors of the join node
and the right part contains all successors of nodes in the
left part. The technique then computes missing edges that
would make the bipartite graph complete, i.e., each node
on the left is connected to each node on the right. In
this example, one missing edge makes the bipartite graph
complete. From this analysis, probe /users/user2/follow

is generated. As shown in Figure 4c, this new probe lets
the technique infer the new path variable user and convert
concrete resource path /users/user1/follow to path template
/users/{user}/follow, thereby improving the specification.

Response probes: Response probes are generated by
analyzing the server responses for existing API calls. For
each response object, the technique builds probes from keys
and values extracted from the response. Suppose the
response for GET /tags is [{ id: 1, name: tag1, author:

user1}, { id: 2, name: tag2, author: user1}], { id:

3, name: tag3, author: user2}. Using this response, we
build probes such as /tags/1, /tags/id, /tags/tag2,

/tags/author. As shown in Figure 4d, by analyzing the
articles object, we build probes /articles/1/comments

and /articles/1, which result in inference of path templates
/articles/{article} and /articles/{article}/comments.
Similarly, response analysis of tags object results in the
addition of path template /tags/{tag}.

Operation probes: Operation probes are generated by
analyzing API calls based on coverage of HTTP methods per
known API endpoint. We consider seven HTTP operations—
GET, POST, PUT, PATCH, OPTIONS, HEAD, and DELETE—in
our analysis. For example, if the existing set of API calls
contains GET /tags/1 and PATCH /tags/1, we generate five
probes for the endpoint, each covering one of the remaining
HTTP operations (e.g., DELETE /tags/1).

Probe Scheduling: HTTP requests can cause server-side
state updates and, in general, the server response for a request
can vary based on other requests. Moreover, the resources
corresponding to a URI could be dynamic and only available
in certain server-side states. Therefore, API probing should be
performed at appropriate server states; our technique achieves
this via probe scheduling, based on API graph analysis.

For each probe, we first check if the URI has a corre-
sponding endpoint node in the graph. Consider the example
in Figure 6. Node user1, which is the endpoint node for
URI /users/user1, already exists in the graph, whereas
the corresponding node for /tags/1 does not exist. If the
endpoint node for a probe exists, we schedule the probe

6

TABLE I: Web applications used in the evaluation.
Application Framework # API Endpoints # Operations LOC

booker Spring-boot, ReactJS 15 24 8K
ecomm Spring-boot 21 22 6K
jawa Spring-boot, AngularJS 5 8 20K
medical Spring-boot, VueJS 20 28 5K
parabank Spring-mvc, AngularJS 27 27 60K
petclinic Spring-boot, AngularJS 17 36 39K
realworld Express, NextJS 12 19 12K

Total 117 164 150K

immediately before the last request in the original list whose
URI includes the segment/node. If the endpoint node does not
exist, we schedule the probe after each checkpoint request.
A checkpoint request is an HTTP request that can change
the server-side state. We define two types of checkpoints:
cookie-based and operation-based. Cookie-based checkpoints
are the HTTP requests for which the server responds with
a set-cookie field. Operation-based checkpoints correspond to
HTTP requests capable of modifying resources, i.e., HTTP
methods PUT, POST, DELETE, and PATCH. In Figure 6, the
two POST requests are checkpoint requests. As the final list
in Figure 6 shows, GET /users/user1 is scheduled only once,
immediately after the node is discovered in the graph, whereas
GET /tags/1 is scheduled three times (corresponding to three
potential server-side states), once before any checkpoint and
once each after the two checkpoints in the original list. After
the probes are executed, we keep only one instance of a
successful probe in cases where multiple instances succeed.

IV. IMPLEMENTATION

We implemented our technique in a tool called APICARV.
We use Crawljax [34] to generate UI test cases automati-
cally. The API recorder module uses the Chrome Devtools
Protocol [35] along with Selenium [36] to instrument the
browser during UI test execution to record API calls. Our
implementation and experimental dataset are publicly available
in a replication package [29].

V. EMPIRICAL EVALUATION

We investigated the following research questions in the
evaluation of APICARV.

RQ1: How do carved API tests compare with UI tests in
terms of code coverage and execution efficiency?

RQ2: How effective is APICARV in generating OpenAPI
specifications?

RQ3: Do carved API tests improve the coverage achieved by
automatically generated API test suites?

A. Experiment Setup

We performed the evaluation on seven open-source web
applications; Table I lists the applications and their charac-
teristics. All of the applications implement RESTful APIs
for their services and have OpenAPI specifications available,
which serve as ground truth for measuring the accuracy of the
inferred API specifications.

For UI test generation, we configured Crawljax to run
for 30 minutes. We also created 14 manual tests for three
subjects (booker, medical, ecomm), which required dedicated

action sequences and input data. Thus, our evaluation uses
automatically generated and developer-written UI test cases.

For investigating RQ3, we used two popular automated test
generators for REST APIs—EvoMaster [26] and Schemathe-
sis [27]. EvoMaster can be used in both white-box and black-
box modes; in the white-box mode, it is applicable to REST
APIs implemented in the Java language. For our study, we used
EvoMaster in the black-box mode so that it be applied to non-
Java implementations of REST APIs in our subjects. A recent
empirical study [37] showed these two tools to be the top-
performing tools, in terms of code coverage achieved, among
the set of studied black-box testing tools for REST APIs. We
configured EvoMaster to run for one hour; for Schemathesis,
we used its default configuration settings. We ran each tool
10 times to account for randomness and report coverage data
averaged over the 10 runs.

To measure code coverage, we used JaCoCo [38] for Java-
based APIs and Istanbul [39] for JavaScript-based APIs.

B. Quantitative Analysis of APICARV Stages

Before discussing our results on the research questions, we
present empirical data on different stages of APICARV and
provide a quantitative analysis of the stages. Table II presents
data about the filtering, probing, and test-generation stages.

Columns 2–3 of the table show the number of API calls
available after recording and filtering, and highlight the im-
portance of filtering: i.e., a large proportion of the raw API
calls recorded get filtered out. These calls basically retrieve
resources related to UI rendering in the browser and can be
ignored for testing the functionality of server-side APIs. On
average, over 88% of the raw API calls belong to the category
of irrelevant calls. The proportion of such calls ranges from
over 72% (for realworld) to over 95% (for parabank). Thus,
API filtering is an important component of APICARV; more-
over, as discussed in Section III-A, the filtering component
can be configured to be more strict (removing more of the
raw API calls) or less stringent (removing fewer calls).

Columns 4–7 present information about the probing stage:
probes generated, probes executed, and checkpoints in the
filtered API list. On average, the number of probes generated
is over three times the number of filtered API calls, and the
number of probes executed is 21 times the number of gener-
ated probes. Recall from the discussion of probe scheduling
in Section III-B that some probes are scheduled for multiple
executions based on occurrences of checkpoints in the initial
API list. The number of generated probes varies considerably,
ranging from 0.3 times the initial API calls (for jawa) to almost
19 times the initial API calls (for realworld). Similar large
variation can also be seen in the number of probes executed.
Finally, 444 probes were successful and are added to API test
suite generated at the end of probing.

Columns 8–15 of Table II present data about test generation,
broken down by tests created during carving and probing. It
can be seen that the total number of successful paths, which are
the number of valid resource paths discovered, increases from
176 in the Carver test suite to 286 in the Prober test suite. The

7

TABLE II: Statistics about different analysis stages in APICARV runs on the subject applications.

API Filtering Probing Generated Test Suites

Carver Carver + Prober

recorded filtered generated executed succeeded checkpoints paths total paths success requests time (s) paths total paths success requests time (s)

petclinic 1536 294 1399 5144 102 42 20 20 290 5 50 50 392 7
parabank 13072 574 694 43833 26 68 25 23 572 125 29 27 598 124
realworld 1471 398 7510 72259 225 9 62 36 365 79 116 91 590 103
booker 3610 613 529 85295 57 203 14 10 443 21 24 20 500 21
jawa 1568 198 60 279 13 7 9 4 110 6 18 13 123 6
medical 315 122 1277 39309 17 32 24 23 117 15 26 25 134 17
ecomm 7838 1187 440 4906 4 18 61 60 1175 21 61 60 1179 15

Total 29410 3386 11909 251025 444 379 215 176 3072 273 324 286 3516 294

C
ov

er
ag

e
(%

)

0

20

40

60

80

bo
ok

er

ec
om

m

ja
w

a

m
ed

ic
al

pa
ra

ba
nk

pe
tc

lin
ic

re
al

w
or

ld

av
er

ag
e

UI branch API branch
UI instruction API instruction

(a) Code coverage

E
xe

cu
tio

n
Ti

m
e

(m
in

s)

0

2

4

6

8

10

12
bo

ok
er

ec
om

m

ja
w

a

m
ed

ic
al

pa
ra

ba
nk

pe
tc

lin
ic

re
al

w
or

ld

A
ve

ra
ge

UI Test API Test

(b) Execution time
Fig. 7: Coverage rates and execution times of UI tests and

carved API tests.

Prober is, thus, able to discover 110 additional valid resource
paths across the applications. These 110 path invocations come
at the cost of only 21 seconds. In other words, the Prober test
suite is able to successfully exercise 62.5% more paths with
only a 7.6% increase in test-execution time.

C. RQ1: Coverage Rates and Execution Efficiency of Tests

Figure 7a presents coverage rates for UI tests and carved
API tests. As the data illustrate, the coverage is identical
for all applications, except ecomm, for which instruction and
branch coverage of API test cases are marginally lower (by
1% and 2% respectively). We suspect that this difference
may have been due to API filtering. On average, carved API
test suites covered 18.1% branches and 42.7% instructions,
which is 0.2% less than the coverage achieved by the UI test
suites. Thus, overall, the carved API tests perform very well
in matching the coverage rates of UI test cases.

In terms of execution efficiency, however, there is a big
difference between the two types of test cases, as Figure 7b
shows. On average, the UI test suites took seven minutes to
run, whereas the API test suites ran in about 0.6 minutes
only—more than 10x improvement in execution efficiency.
The biggest improvement occurs for petclinic, for which the
UI test suite took 150 times longer to run than that the API
test suite. Even with the smallest improvement, which occurs
for parabank, the API tests executed over 3x faster than the
UI tests (2.1 minutes versus 7.1 minutes, respectively).

The carved API tests match the coverage achieved by UI tests,
while executing significantly (10x) faster than UI tests. Thus,
carved API tests can be employed for improving test execution
efficiency, without incurring loss in coverage of server-side code.

D. RQ2: Accuracy of Inferred OpenAPI Specification

Goals and Measures. To measure the effectiveness of API-
CARV in inferring API specifications, we compute precision,
recall, and F1 scores for the generated OpenAPI specification
(Sgen) against the existing OpenAPI specification, considered
the ground truth (Sgt), for each subject. We compute these
scores for resource paths and operations (HTTP methods)
defined on resource paths, and for the specification generated
from the API graphs computed after carving and probing. Pre-
cision and recall are computed in the usual way, based on true
positives, false positives, and false negatives. A path/operation
is considered true positive if it occurs in both Sgen and Sgt,
false positive if it occurs in Sgen but not in Sgt, and false
negative if it occurs in Sgt but not in Sgen. F1 score is the
harmonic mean of precision and recall. In addition to these
metrics, we measure duplication factor for Sgen. A duplication
occurs when multiple paths/operations in Sgen correspond to
the one path/operation in Sgt. We map paths in Sgen to paths
in Sgt, and compute duplication factor as (# mapped paths in
Sgt / # mapped paths in Sgen). The computed value ranges
from 0 to 1, with higher values indicating less duplication (the
value 1 means there is no repetition of API endpoints in Sgen).
The presence of duplication causes Sgen to contain redundant
paths/operations that can be combined.

Results and Analysis. Table III presents the precision, re-
call, and F1 scores for specification inference. In terms of
resource paths, APICARV achieves perfect precision score for
specifications created after carving and 98% precision after
probing (Column 2). The recall after the carving phase is
49%, which the probing phase improves to 56%—a gain of
14% (Column 3). The probing phase is intended to address
incompleteness in the set of API calls observed during UI
navigation; the result shows that it achieves that to some
degree and, notably, without causing any significant reduction
in precision. The overall recall at 56% is somewhat low,
which is a consequence of the incompleteness inherent in
dynamic analysis. This can be addressed via improvements in
crawling or providing higher coverage UI test suites as input
to APICARV. This is an orthogonal aspect to APICARV’s core
API and test carving techniques.

In terms of operations, the results for recall (Column 6) after
the carving phase is 46%, which the probing phase improves
to 54%—a gain of 17%. The precision value for operations
is high (85%) after carving, but there is a significant drop

8

TABLE III: Precision, recall, and F1 scores for spec inference.
Path Operation

Tool Pr Re F1 Pr Re F1 Pr* F1*

Carver 1.00 0.49 0.32 0.85 0.46 0.28 1.00 0.31
Carver+Prober 0.98 0.56 0.35 0.48 0.54 0.25 0.95 0.34

TABLE IV: Endpoints, duplication and inconsistencies per subject.
Endpoints Duplication Operation

covered Path Operation Inconsistencies

carver car+pro carver car+pro carver car+pro carver car+pro

booker 8 10 0.89 0.91 0.92 0.94 0 21
ecomm 13 13 0.81 0.81 0.82 0.82 11 14
jawa 2 2 1.00 1.00 1.00 1.00 0 2
medical 15 16 0.88 0.89 0.89 0.90 9 17
parabank 9 9 1.00 1.00 1.00 1.00 0 12
petclinic 8 12 0.80 0.67 0.94 0.67 5 18
realworld 4 5 0.57 0.56 0.57 0.56 0 18

Ave/Tot 59 67 0.85 0.83 0.88 0.84 25 102

to 48% after probing (Column 5). Upon closer inspection,
we found that this is caused by operation probes, specifically
the probes with HTTP method OPTIONS and HEAD; these
requests are not handled correctly in any of the subjects.
Ideally, an OPTIONS request should provide the available
operations for an API endpoint and it should be documented
in the specification. In all of our subjects, the server returns
a success status (200) for an OPTIONS request, whereas none
of the specifications documents the OPTIONS operation for
any of the endpoints. We consider this to be a specification
inconsistency with respect to application behavior; on ignor-
ing this inconsistency, APICARV achieves 95% precision for
operations as well (shown as Pr* in Table III).

APICARV achieves high precision in inferring resource paths and
operations. The probing phase of APICARV increases the recall
and F1 scores, while not causing any reduction in precision.

A manual analysis revealed that the path and operation
precision drops from 1.0 to 0.98 and 0.95 because of one API
endpoint found through probing in realworld. We verified
that the resource path is indeed valid and provides a health-
check for the service despite being absent in the specification,
a potential inconsistency. Table IV shows the operation in-
consistencies that we found per subject. The inconsistencies
exposed by the carver are particularly interesting because these
OPTIONS and HEAD requests are actually being used by the
client—the application UI layer running in the browser—to
communicate with the server. Recall that the carver uses only
the requests captured during UI navigation. For example, the
UI client of the ecomm uses the operation OPTIONS on 11 API
endpoints for server communication. These inconsistencies
indicate room for potential improvements in the specifications,
in particular, by documenting the OPTIONS HTTP method for
API endpoints.

Columns 4–7 of Table IV show the duplication factor
computed per subject for the spec generated after carving and
probing phase. It can be seen that the duplication factor does
not vary significantly for six of the subjects. Path and operation

duplication drops to 0.67 from 0.8 and 0.94 respectively for
petclinic because of the challenge in determining similarity
of responses (Algorithm 2 lines 15–23). Recall that we use
a tree-based comparison to determine response similarity and
in the case of petclinic, the server provides responses that are
structurally dissimilar based on the back-end data differences.

Endpoints covered per subject (Columns 2-3 of Table IV)
improves in four of the seven subjects with the biggest increase
of 50% in petclinic. Overall, the endpoint coverage increases
from 59 to 67, a 14% increase which is reflected in the path
recall values (Column 3 of Table III) as well.

APICARV can detect potential inconsistencies between API
implementations and specifications, and could be leveraged for
improving specifications.

E. RQ3: Augmentation Effectiveness of Carved API Tests

Goals and Measures. With RQ3, we investigate the usefulness
of carved API tests in enhancing the coverage rates achieved
by EvoMaster [26] and Schemathesis [27]. Specifically, we
measure instruction and branch coverage of the test suites
generated by those tools; then, we augment the test suites in
two steps, first by adding the carved API tests and then by
adding the successful probes, and measure the coverage gains
in each augmentation step.

Results and Analysis. Figure 8 presents the results for RQ3.
It shows the instruction and branch coverage rates for original
API test suites generated by EvoMaster and Schemathesis
and the two augmented test suites. Overall, the augmentation
effectiveness of carved tests is quite good: coverage increases
in most instances, with a few exceptions (e.g., there are no
coverage gains for jawa). In terms of instructions, on average,
the coverage of EvoMaster test suite increases from 41% to
51%, for a coverage gain of 24%; for Schemathesis, coverage
increases from 37% to 48%, for a coverage gain of 29%. For
branch coverage, augmentation has a bigger effect because
of the low coverage rates of the original test suites. For
EvoMaster, branch coverage gain is 77%, increasing from
13% to 23%. For Schemathesis, branch coverage gain is 75%,
increasing from 12% to 21%. For both types of coverage, the
gains for booker and parabank are very substantial.

The delta coverage from probes on top of the gains from
carved tests is small, but still occurs in several instances. For
example, the probes provide considerable increase in branch
coverage for booker—48% to 53% for EvoMaster and 46%
to 51% for Schemathesis.

APICARV can significantly increase coverage achieved by Evo-
Master and Schemathesis and, thus, can effectively complement
such tools. The probing stage of APICARV can provide small
additional gains on top of the gains from API tests carved from
UI paths.

F. Threats to Validity

Our study may suffer external and internal threats to validity.
In terms of external threats, we used seven web apps and two

9

emememem emem st st st st st st stem

(a) Instruction coverage

emem em em em em emst st st st st st st

(b) Branch coverage
Fig. 8: Augmentation effectiveness of carved tests: coverage rates of test suites generated by EvoMaster (em) and

Schemathesis (st) before augmentation (original) and after augmentation with carved tests and probes.

REST testing tools. Our selection of web apps was constrained
to apps that implement RESTful services and have an Ope-
nAPI specification available to serve as ground truth; also,
our requirement of measuring code coverage on APIs further
constrained the candidate apps. Future evaluation with more
and varied web apps will help confirm whether our results
generalize. Our selection of REST testing tools was guided by
a recent study [37] that showed EvoMaster and Schemathesis
to be two of the most effective tools in terms coverage rates.
Another threat is the use of existing OpenAPI specifications
as ground truth. We think this is a reasonable choice for our
experiments and we use them with the expectation that they
may have some inconsistencies. As for internal threats, there
may be bugs in APICARV and our data-collection scripts. We
mitigated these threats by implementing automated unit test
cases for APICARV and manually checking random samples
of our results. We also make APICARV and our experiment
artifacts available [29] to enable replication of our results.

VI. RELATED WORK

To the best of our knowledge, our work is the first
to propose carving of API-level tests from UI-level exe-
cutions. Several papers have explored carving of unit-level
tests from system-level executions using code instrumenta-
tion techniques, e.g., [23], [24], [25]. For instance, unit-level
tests are carved from system level tests [23] consisting of
Java-based code exercising the application end-to-end. Other
techniques [24] selectively capture and replay events and
interactions between the selected program components and the
rest of the application, using simplified state representations or
they aim [25] at enhancing replay efficiency by mixing action-
based and state-based checkpointing. All these approaches
evaluate and highlight different advantages of the carved
tests compared to the original tests, such as their execution
efficiency and robustness to program changes. Carved unit
tests are shown [23] to be orders of magnitudes faster than the
original executions, while retaining most of their fault detec-
tion capabilities. These advantages also motivate our work, and
our evaluation demonstrates the significant efficiency increase
of API-level tests compared to UI-level tests.

Dynamic specification mining has mostly concentrated on
mining behavioral models of a program from its execution

traces [40], [41], [42]. These models capture relations between
data values and component interactions, to allow for accurate
analysis and verification of the software. More relevant to our
work are approaches recently suggested for mining OpenAPI
specifications. Several works propose inferring OpenAPI spec-
ifications from web API documentation pages. AutoREST [43]
infers API specifications from HTML-based documentation
via selection of web pages that likely contain information
relevant to the specification. A set of fixed rules is then applied
to extract the relevant information and construct the specifica-
tion. D2Spec [44] uses a set of machine-learning techniques
to extract the base URL, path templates, and HTTP methods
from crawled documentation pages. A different approach that
uses dynamic information is taken in [45], which generates
web API specifications from example request-response pairs.
Closest work to ours is SpyREST [46], which intercepts
HTTP requests to an API and applies a simple heuristic for
identifying path parameters, by considering numerical path
items and using regular expression matching. In contrast, our
approach infers path parameters via API-graph analysis and
API probing. We tried to execute SpyREST for comparison
with our spec inference, but its service failed to work.

VII. CONCLUSION AND FUTURE WORK

We presented APICARV, a first-of-its-kind technique and
tool for carving API tests and specifications from UI tests.
Our evaluation on seven open-source web apps showed that
(1) carved API tests achieve similar coverage as the UI
tests that they are created from, but with significantly less
(10x) execution time, (2) APICARV achieves high precision
in inferring API specifications, and (3) APICARV can increase
the coverage achieved by automated REST test generators. In
future work, we will extend our evaluation to enterprise web
apps and non-RESTful web apps, and conduct a user study
to get developer perspective on usefulness of the carved API
tests and specifications. We will investigate approaches for
improving the inferred specifications to take them closer to
developer-written specifications, enhancing the specifications
with information (e.g., example values) that can be leveraged
by automated REST test generators, and improving the recall
of specification inference via novel crawling techniques aimed
at discovering the server-side APIs of a web app.

10

REFERENCES

[1] R. T. Fielding, Architectural styles and the design of network-based
software architectures. University of California, Irvine Irvine, 2000,
vol. 7.

[2] Open API Initiative, “Openapi specification,” https://spec.openapis.org/
oas/latest.html, 2022, accessed: 2022-01-01.

[3] “API Blueprint,” 2022, accessed: Sep 1, 2022. [Online]. Available:
https://apiblueprint.org/

[4] “RAML,” 2022, accessed: Sep 1, 2022. [Online]. Available: https:
//raml.org/

[5] A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés, “Test Coverage Criteria
for RESTful Web APIs,” in Proceedings of the 10th ACM SIGSOFT
International Workshop on Automating TEST Case Design, Selection,
and Evaluation, 2019, p. 15–21.

[6] A. Arcuri, “Restful api automated test case generation with evomaster,”
ACM Transactions on Software Engineering and Methodology (TOSEM),
vol. 28, no. 1, pp. 1–37, 2019.

[7] V. Atlidakis, P. Godefroid, and M. Polishchuk, “Restler: Stateful rest api
fuzzing,” in 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). Montreal, QC, Canada: IEEE, 2019, pp. 748–758.

[8] E. Viglianisi, M. Dallago, and M. Ceccato, “Resttestgen: automated
black-box testing of restful apis,” in 2020 IEEE 13th International
Conference on Software Testing, Validation and Verification (ICST).
IEEE, 2020, pp. 142–152.

[9] S. Karlsson, A. Čaušević, and D. Sundmark, “Quickrest: Property-based
test generation of openapi-described restful apis,” in 13th International
Conference on Software Testing, Validation and Verification (ICST).
IEEE, 2020, pp. 131–141.

[10] A. Martin-Lopez, S. Segura, and A. Ruiz-Cortés, “Restest: Black-box
constraint-based testing of restful web apis,” in International Conference
on Service-Oriented Computing. Springer, 2020, pp. 459–475.

[11] P. Godefroid, B.-Y. Huang, and M. Polishchuk, “Intelligent rest api data
fuzzing,” in Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, 2020, pp. 725–736.

[12] Z. Hatfield-Dodds and D. Dygalo, “Deriving semantics-aware fuzzers
from web api schemas,” 2021. [Online]. Available: https://arxiv.org/abs/
2112.10328

[13] D. Corradini, A. Zampieri, M. Pasqua, E. Viglianisi, M. Dallago,
and M. Ceccato, “Automated black-box testing of nominal and error
scenarios in restful apis,” Software Testing, Verification and Reliability,
p. e1808, 2022.

[14] S. Segura, J. A. Parejo, J. Troya, and A. Ruiz-Cortés, “Metamorphic
testing of restful web apis,” IEEE Transactions on Software Engineering
(TSE), pp. 1083–1099, 2017.

[15] N. Laranjeiro, J. Agnelo, and J. Bernardino, “A black box tool for
robustness testing of rest services,” IEEE Access, pp. 24 738–24 754,
2021.

[16] D. Stallenberg, M. Olsthoorn, and A. Panichella, “Improving test case
generation for rest apis through hierarchical clustering,” in 2021 36th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE). IEEE, 2021, pp. 117–128.

[17] H. Wu, L. Xu, X. Niu, and C. Nie, “Combinatorial testing of restful
apis,” in ACM/IEEE International Conference on Software Engineering
(ICSE), 2022.

[18] Y. Liu, Y. Li, G. Deng, Y. Liu, R. Wan, R. Wu, D. Ji, S. Xu, and M. Bao,
“Morest: Model-based restful api testing with execution feedback,” arXiv
preprint arXiv:2204.12148, 2022.

[19] B. Marculescu, M. Zhang, and A. Arcuri, “On the faults found in rest
apis by automated test generation,” ACM Trans. Softw. Eng. Methodol.,
vol. 31, no. 3, 2022.

[20] “SpringFox: Automated JSON API documentation for API’s built
with Spring,” 2022, accessed: Sep 1, 2022. [Online]. Available:
https://springfox.github.io/springfox/

[21] “springdoc-openapi,” 2022, accessed: Sep 1, 2022. [Online]. Available:
https://springdoc.org/

[22] “SpringBoot,” 2022, accessed: Sep 1, 2022. [Online]. Available:
https://spring.io/projects/spring-boot/

[23] S. G. Elbaum, H. N. Chin, M. B. Dwyer, and M. Jorde, “Carving and
replaying differential unit test cases from system test cases,” IEEE Trans.
Software Eng., vol. 35, no. 1, pp. 29–45, 2009.

[24] S. Joshi and A. Orso, “SCARPE: A Technique and Tool for Selective
Capture and Replay of Program Executions,” in Proceedings of the 23rd
International Conference on Software Maintenance. IEEE, 2007, pp.
234–243.

[25] G. Xu, A. Rountev, Y. Tang, and F. Qin, “Efficient checkpointing of java
software using context-sensitive capture and replay,” in ESEC/SIGSOFT
FSE. ACM, 2007, pp. 85–94.

[26] “EvoMaster: A Tool For Automatically Generating System-Level
Test Cases,” 2022, accessed: Sep 1, 2022. [Online]. Available:
https://github.com/EMResearch/EvoMaster

[27] “schemathesis,” 2022, accessed: Sep 1, 2022. [Online]. Available:
https://github.com/schemathesis/schemathesis

[28] Z. Hatfield-Dodds and D. Dygalo, “Deriving semantics-aware fuzzers
from web api schemas,” in 2022 IEEE/ACM 44th International Con-
ference on Software Engineering: Companion Proceedings (ICSE-
Companion), 2022, pp. 345–346.

[29] “Carving API test suites from UI test suites,” https://github.com/
apicarve/apicarver, 2022.

[30] Gérôme Grignon, Manuel Vila, “The mother of all demo apps,” https:
//github.com/gothinkster/realworld, 2022, accessed: 2022-01-01.

[31] J. Gregorio, R. Fielding, M. Hadley, M. Nottingham, , and
D. Orchard, “URI Template,” RFC 6570, 2012. [Online]. Available:
https://www.rfc-editor.org/info/rfc6570

[32] M. Grechanik, Q. Xie, and C. Fu, “Maintaining and evolving GUI-
directed test scripts,” in Proceedings of 31st International Conference
on Software Engineering, ser. ICSE 2009. IEEE, 2009, pp. 408–418.

[33] M. Pawlik and N. Augsten, “Tree edit distance: Robust and memory-
efficient,” Inf. Syst., vol. 56, pp. 157–173, 2016.

[34] A. Mesbah, A. van Deursen, and S. Lenselink, “Crawling ajax-based web
applications through dynamic analysis of user interface state changes,”
ACM Transactions on the Web, vol. 6, no. 1, pp. 3:1–3:30, 2012.

[35] Google, “Chrome devtools protocol,” https://chromedevtools.github.io/
devtools-protocol/, 2022, accessed: 2022-01-01.

[36] “Selenium web browser automation,” https://www.selenium.dev/, 2022,
accessed: 2022-07-01.

[37] M. Kim, Q. Xin, S. Sinha, and A. Orso, “Automated test generation
for rest apis: No time to rest yet,” in Proceedings of the 31st ACM
SIGSOFT International Symposium on Software Testing and Analysis.
Association for Computing Machinery, 2022, p. 289–301. [Online].
Available: https://doi.org/10.1145/3533767.3534401

[38] “JaCoCo Java Code Coverage Library,” 2022, accessed: Sep 1, 2022.
[Online]. Available: https://www.eclemma.org/jacoco/

[39] Apache, “https://istanbul.js.org/,” https://istanbul.js.org/, 2022, accessed:
2022-09-01.

[40] G. Ammons, R. Bodík, and J. R. Larus, “Mining specifications,” ser.
POPL ’02. ACM, 2002, p. 4–16.

[41] D. Lorenzoli, L. Mariani, and M. Pezzè, “Automatic generation of
software behavioral models,” in Proceedings of the 30th International
Conference on Software Engineering, W. Schäfer, M. B. Dwyer, and
V. Gruhn, Eds. ACM, 2008, pp. 501–510.

[42] M. Pradel, P. Bichsel, and T. R. Gross, “A framework for the evaluation
of specification miners based on finite state machines,” in ICSM. IEEE
Computer Society, 2010, pp. 1–10.

[43] H. Cao, J. Falleri, and X. Blanc, “Automated generation of REST API
specification from plain HTML documentation,” in ICSOC, ser. Lecture
Notes in Computer Science, vol. 10601. Springer, 2017, pp. 453–461.

[44] J. Yang, E. Wittern, A. T. Ying, J. Dolby, and L. Tan, “Towards extracting
web api specifications from documentation,” in 2018 IEEE/ACM 15th
International Conference on Mining Software Repositories (MSR), 2018,
pp. 454–464.

[45] H. Ed-douibi, J. L. Cánovas Izquierdo, and J. Cabot, “Example-driven
web api specification discovery,” in Modelling Foundations and Ap-
plications, A. Anjorin and H. Espinoza, Eds. Springer International
Publishing, 2017, pp. 267–284.

[46] S. M. Sohan, C. Anslow, and F. Maurer, “Spyrest: Automated restful api
documentation using an http proxy server (n),” in 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
2015, pp. 271–276.

11

https://spec.openapis.org/oas/latest.html
https://spec.openapis.org/oas/latest.html
https://apiblueprint.org/
https://raml.org/
https://raml.org/
https://arxiv.org/abs/2112.10328
https://arxiv.org/abs/2112.10328
https://springfox.github.io/springfox/
https://springdoc.org/
https://spring.io/projects/spring-boot/
https://github.com/EMResearch/EvoMaster
https://github.com/schemathesis/schemathesis
https://github.com/apicarve/apicarver
https://github.com/apicarve/apicarver
https://github.com/gothinkster/realworld
https://github.com/gothinkster/realworld
https://www.rfc-editor.org/info/rfc6570
https://chromedevtools.github.io/devtools-protocol/
https://chromedevtools.github.io/devtools-protocol/
https://www.selenium.dev/
https://doi.org/10.1145/3533767.3534401
https://www.eclemma.org/jacoco/
https://istanbul.js.org/

	Introduction
	Background and Motivating Example
	Approach
	API Test Carving
	API Specification Inference
	API Graph Construction
	API Specification Generation
	Probing: API Graph Expansion

	Implementation
	Empirical Evaluation
	Experiment Setup
	Quantitative Analysis of ApiCarv Stages
	RQ1: Coverage Rates and Execution Efficiency of Tests
	RQ2: Accuracy of Inferred OpenAPI Specification
	RQ3: Augmentation Effectiveness of Carved API Tests
	Threats to Validity

	Related Work
	Conclusion and Future Work
	References

